已知椭圆(a>b>0)的离心率为
,以原点为圆心,椭圆短半轴长半径的圆与直线y=x+
相切.
(1)求椭圆的方程;
(2)设直线与椭圆在
轴上方的一个交点为
,
是椭圆的右焦点,试探究以
为
直径的圆与以椭圆长轴为直径的圆的位置关系.
已知命题在[-1,1]上有解,命题q:
只有一个实数x满足:
(I)若的图象必定过两定点,试
写出这两定点的坐标
(只需填写出两点坐标即可);
(II)若命题“p或q”为假命题,求实数a的取值范围.
已知函数时都取得极值.
(I)求a、b的值与函数的单调区间;
(II)若对的取值范围.
某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口的O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(I)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(II)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.
如图,在四棱锥中,底面ABCD是正方形,侧棱
底面ABCD,
,E是PC的中点.
(1)证明平面EDB;
(2)求EB与底面ABCD所成的角的正切值.
若=
,
=
,其中
>0,记函数f(
x)=2
·
,f(x)图象中相邻两条对称轴间的距离为
,(1)求
的值;
(2)求f(x)的单调减区间和f(x)的最大值及取得最大值时x的取值集合.