运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.
(1)如图,在等腰三角形ABC中,AB=AC,AC边上的高为,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为
、
.连接AM,可得结论
+
=
.当点M在BC延长线上时,
、
、
之间的等量关系式是 .(直接写出结论不必证明).
(2)应用:平面直角坐标系中有两条直线:
、
:
,若
上的一点M到
的距离是1.请运用(1)的条件和结论求出点M的坐标.
(1)计算:;(2)求x的值:
.
已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.
(1)求证:AB=BC;
(2)当BE⊥AD于E时,试证明:BE=AE+CD.
平行四边形两个顶点坐标分别为(-3,0),(1,0),第3个顶点在y轴上,且与x轴的距离为3个单位长度.求第4个顶点的坐标.
如图,AB两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车从A地出发驶往B地,图中PQR和线段MN,分别表示甲和乙所行驶的路程S与该日下午时间t之间的关系,试根据图形回答:
(1)甲出发几小时,乙才开始出发?
(2)乙行驶多少分钟赶上甲,这时两人离B地还有多少千米?
(3)甲从下午2时到5时的速度是多少?
(4)乙行驶的速度是多少?
如图,已知在△ABC中,∠ACB=90°,点D、E、F分别是AC、AB、BC的中点,
试说明:CE=DF.