游客
题文

如图,已知关于的一元二次函数)的图象与轴相交于两点(点在点的左侧),与轴交于点,且,顶点为

(1)求出一元二次函数的关系式;
(2)点为线段上的一个动点,过点轴的垂线,垂足为.若 的面积为,求关于的函数关系式,并写出的取值范围;
(3)在(2)的条件下,当点坐标是            时, 为直角三角形.

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

某县为了了解2013年初中毕业生毕业后的去向,对部分初三学生进行了抽样调查,就初三学生的四种去向

A.读普通高中; B.读职业高中 C.直接进入社会就业; D.其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请问:


(1)该县共调查了  名初中毕业生;
(2)将两幅统计图中不完整的部分补充完整;
(3)若该县2013年初三毕业生共有4500人,请估计该县今年的初三毕业生中读普通高中的学生人数.

先化简,再求值:,其中x=2.

解不等式组,并把解集在数轴上表示出来.

阅读材料:如图1,在平面直角坐标系中,A、B两点的坐标分别为A(x1,y1),B(x2,y2),AB中点P的坐标为(xp,yp).由xp﹣x1=x2﹣xp,得,同理,所以AB的中点坐标为.由勾股定理得,所以A、B两点间的距离公式为
注:上述公式对A、B在平面直角坐标系中其它位置也成立.
解答下列问题:

如图2,直线l:y=2x+2与抛物线y=2x2交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C.
(1)求A、B两点的坐标及C点的坐标;
(2)连结AB、AC,求证△ABC为直角三角形;
(3)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.

如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.

(1)求证:AE=BC;
(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;
(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号