如图,已知关于的一元二次函数
(
)的图象与
轴相交于
、
两点(点
在点
的左侧),与
轴交于点
,且
,顶点为
.
(1)求出一元二次函数的关系式;
(2)点为线段
上的一个动点,过点
作
轴的垂线
,垂足为
.若
,
的面积为
,求
关于
的函数关系式,并写出
的取值范围;
(3)在(2)的条件下,当点坐标是 时,
为直角三角形.
某县为了了解2013年初中毕业生毕业后的去向,对部分初三学生进行了抽样调查,就初三学生的四种去向
A.读普通高中; | B.读职业高中 | C.直接进入社会就业; | D.其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请问: |
(1)该县共调查了 名初中毕业生;
(2)将两幅统计图中不完整的部分补充完整;
(3)若该县2013年初三毕业生共有4500人,请估计该县今年的初三毕业生中读普通高中的学生人数.
先化简,再求值:,其中x=2.
解不等式组,并把解集在数轴上表示出来.
阅读材料:如图1,在平面直角坐标系中,A、B两点的坐标分别为A(x1,y1),B(x2,y2),AB中点P的坐标为(xp,yp).由xp﹣x1=x2﹣xp,得,同理
,所以AB的中点坐标为
.由勾股定理得
,所以A、B两点间的距离公式为
.
注:上述公式对A、B在平面直角坐标系中其它位置也成立.
解答下列问题:
如图2,直线l:y=2x+2与抛物线y=2x2交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C.
(1)求A、B两点的坐标及C点的坐标;
(2)连结AB、AC,求证△ABC为直角三角形;
(3)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.
如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.
(1)求证:AE=BC;
(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;
(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.