如图,在平面直角坐标系中0A=2,0B=4,将△OAB绕点O顺时针旋转90°至△OCD,若已知抛物线过点A、D、B.
(1)求此抛物线的解析式;
(2)连结DB,将△COD沿射线DB平移,速度为每秒个单位.
①经过多少秒O点平移后的O′点落在线段AB上?
②设DO的中点为M,在平移的过程中,点M、A、B能否构成等腰三角形?若能,求出构成等腰三角形时M点的坐标;若不能,请说明理由.
如图,ABCD,四个内角平分线相交于E、F、G、H。求证:四边形EFGH是矩形。
方程;
(1)取何值时是一元二次方程,并求出此方程的解;
(2)取何值时是一元一次方程;
如图,在四边形 ABCD 中,AB = CD,M、N、E、F 分别为 AD、BC、BD、AC 的中点,
求证:四边形 MENF为菱形。
解方程:(x+2)2﹣5(x+2)=0.
如图,直角梯形OABC,OC边放在x轴上,OA边放在y轴上,OC=12,BC=8,∠C=60°,点P以1个单位的速度从O点出发沿OC运动,点Q以相同的速度从C点出发,沿CB—BA运动,当一点到达终点时,两点停止运动;
(1)写出B点的坐标;
(2)写出△OPQ的面积S与时间t之间的函数关系式
(3)当Q点在BC边上运动时,是否存在t值,使△OPQ为等腰三角形?若有,求出此时的t 值.如果没有,请说明理由