某商场为了吸引顾客,设计了一种促销活动.在一个不透明的箱子里放有4个完全相同的小球,球上分别标有“0元”、“10元”、“30元”、“50元”的字样.规定:顾客在本商场同一日内,消费每满300元,就可以从箱子里先后摸出两个球(每次只摸出一个球,第一次摸出后不放回).商场根据两个小球所标金额之和返还相应价格的购物券,可以重新在本商场消费.某顾客消费刚好满300元,则在本次消费中:
(1)该顾客至少可得 元购物券,至多可得 元购物券;
(2)请用画树状图或列表法,求出该顾客所获购物券的金额不低于50元的概率.
已知:在直角坐标平面内,△ABC三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)
(1)在备用图(1)中,画出△ABC向下平移4个单位长度得到△AB
C
,点C
的坐标是________.
(2)在备用图(2)中,以点B为位似中心,在网格内画出△AB
C
,使△A
B
C
与△ABC位似,且位似比为2︰1,点C
的坐标是________.
(3)△AB
C
的面积是________平方单位.
如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN.
(1)求证:AM=BN;
(2)当MA∥CN时,试求旋转角α的余弦值.
如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.
实践与操作:
根据要求尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法).
(1)作∠DAC的平分线AM;
(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE、CF.
猜想并证明:
判断四边形AECF的形状并加以证明.
如图,在△ABC中,AB=4cm,AC=6cm.
(1)作图:作BC边的垂直平分线分别交与AC,BC于点D,E(用尺规作图法,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,连结BD,求△ABD的周长.
如图1,在Rt△ACB中,∠ACB=90°,AC=3,BC=4,有一过点C的动圆⊙O与斜边AB相切于动点P,连接CP.
(1)当⊙O与直角边AC相切时,如图2所示,求此时⊙O的半径r的长;
(2)随着切点P的位置不同,弦CP的长也会发生变化,试求出弦CP的长的取值范围.
(3)当切点P在何处时,⊙O的半径r有最大值?试求出这个最大值.