如图,在直角坐标系中,点是反比例函数
的图象上一点,
轴的正半轴于
点,
是
的中点;一次函数
的图象经过
、
两点,并交
轴于点
若
(1)求反比例函数和一次函数的解析式;
(2)观察图象,请写出在轴的右侧,当
时,
的取值范围.
甲、乙两商场各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.
(1)根据题意,填写下表(单位:元):
(2)当x取何值时,小红在甲、乙两商场的实际花费金额相同?
(3)请你根据小红累计购物的金额选择花费较少的商场?
星期天,小华到小明家邀请小明到新华书店看书,当小华到达CD(点D是小华的眼睛)处时,发现小明在七楼A处,此时测得仰角为45°,继续向前走了10m到达C′D′处,发现小明在六楼B处,此时测得仰角为60°,已知楼层高AB=2.7m,求OC′的长.(参考数据:)
某校为了解五年级女生体能情况,抽取了50名五年级女学生进行“一分钟仰卧起坐”测试.测试的情况绘制成表格如下:
个数 |
6 |
12 |
15 |
18 |
19 |
20 |
25C |
27 |
30 |
32 |
35 |
36 |
人数 |
2 |
1 |
7 |
18 |
1 |
9 |
5 |
2 |
1 |
1 |
1 |
2 |
(1)通过计算得出这组数据的平均数是20,请你直接写出这组数据的众数和中位数,它们分别是、;
(2)被抽取的五年级女生小红在“一分钟仰卧起坐”项目测试中的成绩是19次,小红认为成绩比平均数低,觉得自己成绩不理想,请你根据(1)中的相关数据分析小红的成绩;
(3)学校根据测试数据规定五年级女学生 “一分钟仰卧起坐”的合格标准为18次,已知该校五年级有女生250名,试估计该校五年级女生“一分钟仰卧起坐”的合格人数是多少?
小晗家客厅里装有一种三位单极开关,分别控制着A(楼梯)B(客厅)C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.
(1)若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?
(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图法或列表法加以说明.
如图,在□ABCD中,点O是AC与BD的交点,过点O的直线EF与AB、CD的延长线分别交于点E、F.
(1)求证:△BOE≌△DOF;
(2)当EF⊥AC时,四边形AECF是怎样的特殊四边形?证明你的结论.