在平面直角坐标系中,O是坐标原点,直角梯形AOCD的顶点A的坐标为
(0,),点D的坐标为(1,
),点C在
轴的正半轴上,过点O且以点D为顶点的抛物线经过点C,点P为CD的中点.
(1)求抛物线的解析式及点P的坐标;
(2) 在轴右侧的抛物线上是否存在点Q,使以Q为圆心的圆同时与
轴、直线OP相切.若存在,请求出满足条件的点Q的坐标;若不存在,请说明理由;
(3)点M为线段OP上一动点(不与O点重合),过点O、M、D的圆与轴的正半轴交于点N.求证:OM+ON为定值.
(4)在轴上找一点H,使∠PHD最大.试求出点H的坐标.
解方程:
(本题12分)如图,点O是等边△ABC内一点,D是△ABC外的一点, ∠AOB= 110°,
∠BOC= ,△BOC ≌△ADC,∠OCD=60°,连接OD。
(1)求证:△OCD是等边三角形;
(2)当=150°时,试判断△AOD 的形状,并说明理由;
(3)探究:当为多少度时,△AOD是等腰三角形。
(本题10分)如图甲,已知A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,
BF⊥AC,且AB=CD。
(1)试问OE=0F吗?请说明理由。
(2)若△DEC沿AC方向平移到如图乙的位置,其余条件不变,上述结论是否仍成立?请说明理由。
![]() |
(本题10分)如图所示的一块地,∠ADC=90°,AD=3m,CD=4m,AB=13m,BC=12m,求这块地的面积。
![]() |
(本题8分)如图,△ABC中,AB=AC,D为BC边的中点,F为CA的延长线上一点,过点F 作FG⊥BC于G点,并交AB于E点,试说明下列结论成立的理由:(1)AD∥FG;
(2)△AEF是等腰三角形