今年4月20日,四川芦山发生了里氏7.0级大地震,给当地人民造成了巨大的损失,“一方有难,八方支援”,我县某中学全体师生积极捐款,其中九年级的三个班学生的捐款金额如下表:
班级 |
(1)班 |
(2)班 |
(3)班 |
金额(元) |
2000 |
![]() |
吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:(2)班的捐款金额比(3)班的捐款金额多300元;信息三:(1)班学生平均每人捐款的金额大于48元,小于51元.请根据以上信息,帮助吴老师解决下列问题:
(1)求出(2)班与(3)班的捐款金额各是多少元;
(2)求出(1)班的学生人数.
化简:
如图,∠MON=90°,A、B分别是OM、ON上的点,OB=4.点C是线段AB的中点,将线段AC以点A为旋转中心,沿顺时针方向旋转90°,得到线段AD,过点B作ON的垂线.
(1)当点D恰好落在垂线上时,求OA的长;
(2)过点D作DE⊥OM于点E,将(1)问中的△AOB以每秒2个单位的速度沿射线OM方向平移,记平移中的△AOB为△,当点O′与点E重合时停止平移.设平移的时间为t秒,△
与△DAE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围;
(3)在(2)问的平移过程中,若与线段
交于点P,连接
,
,
,是否存在这样的t,使△
是等腰三角形?若存在,求出t的值;若不存在,请说明理由.
如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(
,
),与y轴交于C(
,
)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的解析式;
(2)若抛物线的顶点为点D,求△BCD的面积;
(3)设M是(1)所得抛物线上第四象限内的一个动点,过点M作直线l⊥x 轴于点F,交直线BC于点N。试问:线段MN的长度是否存在最大值?若存在,求出它最大值及此时M点的坐标;若不存在,请说明理由.
已知,如图,在中,AE⊥BC,垂足为E,点F为CE上的一点,点G为CD上的一点,CF=CG,连接DF、EG、AG, AG=EG,∠1=∠2.
(1)若CE=4,AE=3,求BE的长;
(2)求证:∠CEG=∠AGE.
某蔬菜店第一次用800元购进某种蔬菜,由于销售状况良好,该店又用了1400元第二次购进该种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元。
(1)第一次所购的该蔬菜的进货价是每千克多少元?
(2)蔬菜店在销售中,如果两次售价均相同,并且忽略其他因素,要使该蔬菜店售完这些蔬菜获利不低于1700元,则该蔬菜每千克售价至少为多少?