如图,二次函数的图象与
轴交于B、C两点(点B在点C的左侧),一次函数
的图象经过点B和二次函数图象上另一点A. 点A的坐标(4 ,3),
.
(1)求二次函数和一次函数解析式;
(2)若点P在第四象限内,求面积S的最大值并求出此时点P的坐标;
(3)若点M在直线AB上,且与点A的距离是到轴距离的
倍,求点M的坐标.
某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开办海产品运输业务,已知运输路程为120千米,汽车和火车的速度分别为60千米/时,100千米/时,两货运公司的收费项目及收费标准如下表所示:
运输工具 |
运输费(元/(吨·千米)) |
冷藏费(元/(吨·小时)) |
过路费(元) |
一次性收取管理费(元) |
汽车 |
2 |
5 |
200 |
0 |
火车 |
1.8 |
5 |
0 |
1600 |
(注:“元/(吨·千米)”表示每吨货物每千米的运费,“元/(吨·小时)”表示每吨货物每小时的冷藏费)
(1)设该批发商待运的海产品有x吨,汽车货运公司和铁路货运公司单独运输所要收取的费用分别为y1元和y2元,求y1和y2关于x的函数解析式;
(2)若该批发商待运的海产品不少于30吨,为节省运费,他应该选择哪个货运公司承担运输业务?
一报亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以按每份0.2元的价格退回报社,在一个月内(按30天计算)有20天每天可以卖出100份,其余10天每天只能卖出60份,但每天报亭从报社订购的报纸份数必须相同,若报亭每天从报社订购的该种晚报份数为自变量x,每月所获利润为y元.
(1)写出y与x之间的函数解析式,并指出自变量x的取值范围;
(2)报亭应该每天从报社订购多少份该种晚报,才能使每月获得的利润最大?最大利润是多少?
如图所示,已知一次函数y=2x+a与y=-x+b的图象都经过点A(-2,0),且与y轴分别交于B,C两点,求△ABC的面积.
已知一次函数的图象经过点A(2,1),B(-1,-3),C(m,3),求这个一次函数的解析式,并求出m的值.
甲、乙两家体育器材商店出售同样的乒乓球拍和乒乓球,球拍每副定价50元,乒乓球每盒定价10元,“十一”长假期间,两家商店都搞促销活动:甲商店规定每买一副乒乓球拍赠2盒乒乓球;乙商店规定所有商品9折优惠.某校乒乓球队需要买2副乒乓球拍,乒乓球若干盒(不少于4盒).设该校要买乒乓球x盒,所需商品在甲商店购买需要y1元,在乙商店购买需要y2元.请分别写出y1,y2关于x的函数解析式,并对x的取值情况进行分析,说明在哪一家商店购买所需商品比较便宜.