游客
题文

某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用适量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:

(1)此次调查抽取了多少用户的用水量数据?
(2)补全频数分别直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;
(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?

科目 数学   题型 解答题   难度 较易
知识点: 统计量的选择
登录免费查看答案和解析
相关试题

先化简,再求值:,其中

画一条数轴,并在数轴上表示:3.5和它的相反数,-和它的倒数,绝对值等于3的数,并把这些数由小到大用“<”号连接起来.

若|a|=4,|b|=2,且a<b,求a-b的值.

已知:如图,平面直角坐标系中,矩形OABC的顶点A(6,0)、B(6,4),D是BC的中点.动点P从O点出发,以每秒1个单位的速度,沿着OA、AB、BD运动.设P点运动的时间为t秒(0<t<13).

(1)写出△POD的面积S与t之间的函数关系式,并求出△POD的面积等于9时点P的坐标;
(2)当点P在OA上运动时,连结CP.问:是否存在某一时刻t,当CP绕点P旋转时,点C能恰好落到AB的中点M处?若存在,请求出t的值并判断此时△CPM的形状;若不存在,请说明理由;
(3)当点P在AB上运动时,试探索当PO+PD的长最短时的直线PD的表达式。

如图,在平面直角坐标系中,点A(0,b),点B(a,0),点D(2,0),其中a、b满足DE⊥x轴,且∠BED=∠ABO,直线AE交x轴于点C.

(1)求A、B两点的坐标;
(2)求直线AE的解析式;
(3)若以AB为一边在第二象限内构造等腰直角三角形△ABF,请直接写出点F的坐标.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号