如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.
(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=,CQ=
时,P、Q两点间的距离 (用含
的代数式表示).
如果将抛物线沿直角坐标平面先向左平移3个单位,再向下平移2个单位,得到了抛物线
.
(1)试确定b,c的值;
(2)求出抛物线的对称轴和顶点坐标.
如图,在△ABC中,AD是BC边的中线,过点C、B分别作AD及其延长线的垂线CF、BE,垂足分别为点F、E.求证:BE=CF
解不等式,并将解集在数轴上表示出来.
如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D 出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1) 求NC,MC的长(用t的代数式表示);
(2) 当t为何值时,四边形PCDQ构成平行四边形?
(3) 当t为何值时,射线QN恰好将△ABC的面积平分?
并判断此时△ABC的周长是否也被射线QN平分.
如图,已知一矩形ABCD,若把△ABE沿折痕BE向上翻折,A点恰好落在DC上,设此点为F,且这时AE:ED=5:3,BE=5,这个矩形的长宽各是多少?