甲布袋中有三个红球,分别标有数字1,2,3;乙布袋中有三个白球,分别标有数字2,3,4.这些球除颜色和数字外完全相同.小亮从甲袋中随机摸出一个红球,小刚从乙袋中随机摸出一个白球.
(1)用画树状图(树形图)或列表的方法,求摸出的两个球上的数字之和为6的概率;
(2)小亮和小刚做游戏,规则是:若摸出的两个球上的数字之和为奇数,小亮胜;否则,小刚胜.你认为这个游戏公平吗?为什么?
如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A顺时针方向旋转90°得到△AB'C'.
(1)在正方形网格中,画出△AB'C';
(2)计算线段AB在旋转到AB'的过程中所扫过区域的面积.(结果保留)
如图,在⊙O中,点P在直径AB的延长线上,PC,PD与⊙O相切,切点分别为点C,点D,连接CD交AB于点E.如果⊙O的半径等于,tan∠CPO=
,求弦CD的长.
解方程:.
某科技开发公司研制出一种新型产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,公司决定组织一次促销活动,促销期间该产品的售价单位y(元)与销售数量x(件)的函数关系如图所示.
(1)求当10≤x≤50时,y与x之间的函数关系式.
(2)设商家一次性购买这种产品m件,开发公司所获得的利润为z元,求z与m之间的函数关系式.
(3)当商家一次性购买产品的件数超过某一数量时,是否存在随着一次性购买数量的增多,公司所获得的利润反而减少这种情况?若存在,求出在这种情况下,m的取值范围;若不存在,请说明理由.
已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:
(1)坡顶A到地面PQ的距离;
(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)