本区某校对学生开展“不闯红灯,珍爱生命”的教育,为此校学生会委员在某天到市中心某十字路口,观察、统计上午7∶00~12∶00之间闯红灯的人次,制作了如下两个统计图:
(1)图一中各时段闯红灯人次的平均数为 人次,中位数是 人次;
(2)该路口这一天上午7∶00~12∶00闯红灯的未成年人有 人次;
(3)估计一周(七天)内该路口上午7∶00~12∶00闯红灯的中青年约有 人次;
(4)是否能以此估计全市这一天上午7∶00~12∶00所有路口闯红灯的人次?为什么?
如图,在等腰直角△ABC中,∠ABC=90°,AB=BC=4,P为AC中点,E为AB边上一动点,F为BC边上一动点,且满足条件∠EPF=45°,记四边形PEBF的面积为S1;
(1)求证:∠APE=∠CFP;
(2)记△CPF的面积为S2,CF=x,y=.
①求y关于x的函数解析式和自变量的取值范围,并求y的最大值.
②在图中作四边形PEBF关于AC的对称图形,若它们关于点P中心对称,求y的值.
对于任意的实数x,记f(x)=.
例如:f(1)==
,f(﹣2)=
=
(1)计算f(2),f(-3)的值;
(2)试猜想f(x)+f(﹣x)的值,并说明理由;
(3)计算f(﹣2014)+f(﹣2013)+…+f(﹣1)+f(0)+f(1)+…+f(2013)+f(2014).
如图,游客从某旅游景区的景点A处下山至C处有两种路径,一中是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客同时从A处下山,甲沿AC匀速步行,速度为45m/min.乙开始从A乘缆车到B,在B处停留5min后,再从B匀速步行到C,两人同时到达.已知缆车匀速直线运动的速度为180m/min,山路AC长为2430m,经测量,∠CAB=45°,∠CBA=105°.(参考数据:1.4,1.7)
(1)求索道AB的长;
(2)为乙的步行速度.
如图,已知AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于点D.
(1)证明:直线PB是⊙O的切线;
(2)若BD=2PA,OA=3,PA=4,求BC的长.
今年植树节,安庆某中学组织师生开展植树造林活动,为了了解全校1200名学生的植树情况,随机抽样调查50名学生的植树情况,制成如下统计表和条形统计图(均不完整).
植树数量(棵) |
频数(人) |
频率 |
3 |
5 |
0.1 |
4 |
20 |
0.4 |
5 |
||
6 |
10 |
0.2 |
合计 |
50 |
1 |
(1)将统计表和条形统计图补充完整;
(2)求抽样的50名学生植树数量的众数和中位数,并从描述数据集中趋势的量中选择一个恰当的量来估计该校1200名学生的植树数量.