游客
题文

如图,P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以个单位每秒速度运动,运动时间为t.

求:(1)C点的坐标为          
(2)当t为何值时,△ANO与△DMR相似?
(3)①求△HCR面积S与t的函数关系式;
②并求以A、B、C、R为顶点的四边形是梯形时t的值及S的值.

科目 数学   题型 解答题   难度 中等
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

先化简,再求值:,其中x=-1.

解一元一次不等式组:,并写出所有的整数解.

如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(-1,0),点A的坐标为(0,2),点B在抛物线y=ax2+ax-2上.

(1)点B的坐标为 ,抛物线的关系式为
(2)若点D是(1)中所求抛物线在第三象限内的一个动点,连接BD、CD,当△BCD的面积最大时,求点D的坐标;
(3)若将三角板ABC沿射线BC平移得到△A′B′C′,当C′在抛物线上时,问此时四边形ACC′A′是什么特殊四边形?请证明之,并判断点A′是否在抛物线上,请说明理由.

如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC边于点D,交AC边于点G,过D作⊙O的切线EF,交AB的延长线于点F,交AC于点E.

(1)求证:BD=CD;
(2)若AE=6,BF=4,求⊙O的半径;
(3)在(2)条件下判断△ABC的形状,并说明理由.

如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴上,顶点C在y轴上,D是BC的中点,过点D的反比例函数图象交AB于E点,连接DE.若OD=5,tan∠COD=

(1)求过点D的反比例函数的解析式;
(2)求△DBE的面积;
(3)x轴上是否存在点P使△OPD为直角三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号