如图1, 在直角梯形中,
,
,
,
为线段
的中点. 将
沿
折起,使平面
平面
,得到几何体
,如图2所示.
(1)求证:平面
;
(2)求二面角的余弦值.
选修:坐标系与参数方程
在极坐标系下,已知圆O:和直线
,
(1)求圆O和直线的直角坐标方程;
(2)当时,求直线
与圆O公共点的一个极坐标.
已知曲线:
,若矩阵
对应的变换将曲线
变为曲线
,求曲线
的方程.
【原创】选修4 - 1:几何证明选讲如图,△ABC内接于⊙O,点D在OC的延长线上,AD与⊙O相切,割线DM与⊙O相交于点M,N,若∠B=30°,AC=1,求DMDN
等差数列的前
项和为
,已知
,
.
(1)求;
(2)若从中抽取一个公比为
的等比数列
,其中
,且
,
.
①当取最小值时,求
的通项公式;
②若关于的不等式
有解,试求
的值.
已知函数,
.
(1)若,则
,
满足什么条件时,曲线
与
在
处总有相同的切线?
(2)当时,求函数
的单调减区间;
(3)当时,若
对任意的
恒成立,求
的取值的集合.