现有两个小麦品种,一个纯种麦性状是高杆(D),抗锈病(T);另一个纯种麦的性状是矮杆(d),易染锈病(t)。两对基因独立遗传。育种专家提出了如右图所示Ⅰ、Ⅱ两种育种方法以获得小麦新品种。问:
(1)要缩短育种年限,应选择的方法是 ,依据的变异原理是 ;另一种方法的变异原理是 。
(2)图中①和④基因组成分别为 和 ;。
(3)(二)过程中,D和d的分离发生在 ;
(三)过程采用的方法称为 ;
(四)过程常用的化学药剂 。
(4)如果让F1按(五)、(六)过程连续自交二代,则⑥中符合生产要求的能稳定遗传的个体占 。
(5)如将方法Ⅰ中获得的③⑤植株杂交,再让所得到的后代自交,则后代的基因型比例为 。
在栽培某种农作物(2n=42)的过程中,有时会发现单体植株(2n-1),例如有一种单体植株就比正常植株缺少一条6号染色体,称为6号单体植株。
(1)6号单体植株的变异类型为 ,该植株的形成是因为亲代中的一方在减数分裂过程中
未分离。
(2)6号单体植株在减数第一次分裂时能形成 个四分体。如果该植株能够产生数目相等的n型和n-1型配子,则自交后代(受精卵)的染色体组成类型及比例为 。
(3)科研人员利用6号单体植株进行杂交实验,结果如下表所示。
杂交亲本 |
实验结果 |
6号单体(♀)×正常二倍体(♂) |
子代中单体占75%,正常二倍体占25% |
6号单体(♂)×正常二倍体(♀) |
子代中单体占4%,正常二倍体占96% |
① 单体♀在减数分裂时,形成的n-1型配子 (多于、等于、少于)n型配子,这是因为6号染色体往往在减数第一次分裂过程中因无法 而丢失。
② n-1型配子对外界环境敏感,尤其是其中的 (雌、雄)配子育性很低。
(4)现有该作物的两个品种,甲品种抗病但其他性状较差(抗病基因R位于6号染色体上),乙品种不抗病但其他性状优良,为获得抗病且其他性状优良的品种,理想的育种方案是:以乙品种6号单体植株为 (父本、母本)与甲品种杂交,在其后代中选出单体,再连续多代与 杂交,每次均选择抗病且其他性状优良的单体植株,最后使该单体 ,在后代中即可挑选出RR型且其他性状优良的新品种。
家兔的毛色有灰色、黑色、白色三种,受两对等位基因的控制,其中基因A控制黑色素的形成,基因B决定黑色素在毛皮内的分布。科研人员在做杂交实验时发现:灰色雄兔与白色雌兔杂交,子一代全是灰兔(反交的结果相同);子一代灰兔雌雄交配后产生的子二代家兔中,灰兔:黑兔:白兔=9:3:4。
(1)控制家兔毛色的两对基因位于 对同源染色体上。
(2)子二代的灰兔中能够稳定遗传的个体所占的比例为 ,从基因控制性状的角度分析,白兔占4/16的原因是 。
(3)现将绿色荧光蛋白基因(G)转入基因型为AABb雄兔的某条染色体上使之能够在紫外线下发绿色荧光。
① 在培育荧光兔的过程中,可用 法将含目的基因的重组DNA分子导入兔子的 (细胞)中。
② 为了确定基因G所在的染色体,用多只纯种白色雌兔(aabb)与该雄兔测交,产生足够多后代(不考虑交叉互换)。若产生的后代中仅雌性兔能够发荧光,则基因G最可能位于 染色体上。若基因G与基因B位于同一条染色体上,则后代的表现型及比例是 。若后代黑毛兔中能发荧光的个体所占比例为1/2,则G基因位于 染色体上。
哺乳动物的脂肪细胞来源于前脂肪细胞。请分析回答下列问题:
(1)脂肪组织体积增加是前脂肪细胞 和脂肪细胞 的结果。
(2)在体外培养前脂肪细胞,需过滤脂肪组织血管基质,并经 酶消化而得到单个前脂肪细胞,进行原代培养。体外培养细胞的操作及培养过程均需要在 条件下进行。成熟脂肪组织细胞间质少、细胞松散,所以随着前脂肪细胞的分化,细胞贴壁生长性能 。
(3)体外培养前脂肪细胞,检测细胞中脂肪的含量,以判断前脂肪细胞的分化程度,实验结果如下图所示。
① 该实验的目的是 。
② 实验结果显示:实验组与对照组脂肪量的最显著差异出现在第 天,前脂肪细胞培养至第16天时,不同浓度TSH处理的细胞的分化程度 ,上述结果说明 。
番茄喜温不耐热,适宜的生长温度为15~33℃。研究人员在实验室控制的条件下,研究夜间低温条件对番茄光合作用的影响。实验中白天保持25℃,从每日16:00时至次日6:00时,对番茄幼苗进行15℃(对照组)和6℃的降温处理,在实验的第0、3、6、9天的9:00进行相关指标的测定。
(1)图1结果显示,夜间6℃处理后,番茄植株干重 对照组。这表明低温处理对光合作用的抑制 对呼吸作用的抑制。
(2)研究人员在实验中还测定了番茄的净光合速率、气孔开放度和胞间CO2浓度,结果如图2所示。图中结果表明:夜间6℃低温处理,导致 ,使 供应不足,直接影响了光合作用过程中的暗反应,最终使净光合速率降低。
(3)光合作用过程中,Rubisco是一种极为关键的酶。
① 研究人员在低夜温处理的第0、9天的9:00时取样,提取并检测Rubisco的量。结果发现番茄叶片Rubisco含量下降。提取Rubisco的过程在0~4℃下进行,是为了避免 。
② 为研究Rubisco含量下降的原因,研究人员提取番茄叶片细胞的总RNA, 经 过程获得总cDNA。根据番茄Rubisco合成基因的 设计引物,再利用 技术扩增Rubisco合成基因。最后根据目的基因的产量,得出样品中Rubisco合成基因的mRNA的量。
③ 结果发现,低夜温处理组mRNA的量,第0天与对照组无差异,第9天则显著低于对照组。这说明低夜温抑制了Rubisco合成基因 过程,使Rubisco含量下降。
(4)低夜温处理还改变了光合产物向不同器官的分配,使实验组番茄叶、茎、根的光合产物分配比率高于对照组,果实的光合产物分配比率明显低于对照组,这一变化的意义是 。
番茄是二倍体植物。有一种三体,其6号染色体的同源染色体有3条,在减数分裂联会时,3条同源染色体中的任意2条随意配对联会形成一个二价体,另1 条同源染色体不能配对而形成一个单价体。减数第一次分裂的后期,组成二价体的同源染色体正常分离,组成单价体的1条染色体随机地移向细胞的任何一极,而其他染色体正常配对、分离。
(1)从变异类型的角度分析,三体的形成属于 。
(2)若三体番茄的基因型为AABBb,则其产生的花粉的基闪型及其比例为 ,其根尖分生区一细胞连续分裂两次所得到的子细胞的基因型为 。
(3)现以马铃薯叶型(dd)的二倍体番茄为父本,以正常叶型(DD或DDD)的三体 纯合子番茄为母本,设计杂交实验,判断D (或d)基因是否在第6号染色体上。最简单可行的实验方案是 。
实验结果:
①若杂交子代 ,则 。
②若杂交子代 ,则 。