如图,一转盘被等分成三个扇形,上面分别标有-1,1,2中的一个数,指针固定,转动转盘后任其自由停止,这时某个扇形会恰好停在指针所指的位置,并相应得到这个扇形上的数( 若指针恰好指在等分线上,当做指向右边的扇形).
若转动一次转盘,将所得的数作为k,则使反比例函数 的图象在第一、三象限的概率是多少?若小静和小宇进行游戏,每人各转动两次转盘,若两次所得数的积为正数,则小静赢,若两次所得数的积为负数,则小宇赢.这是个公平的游戏吗?请说明理由.(借助画树状图或列表的方法)
如图,在平面直角坐标系中,直线 与直线 交点 的横坐标为2,将直线 沿 轴向下平移4个单位长度,得到直线 ,直线 与 轴交于点 ,与直线 交于点 ,点 的纵坐标为 .直线 与 轴交于点 .
(1)求直线 的解析式;
(2)求 的面积.
某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择: .模拟驾驶; .军事竞技; .家乡导游; .植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:
(1)八年级(3)班学生总人数是 ,并将条形统计图补充完整;
(2)刘老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.
如图, , 的顶点 , 分别落在直线 , 上, 交 于点 , 平分 .若 , ,求 的度数.
如图,在平面直角坐标系中,点 在抛物线 上,且横坐标为1,点 与点 关于抛物线的对称轴对称,直线 与 轴交于点 ,点 为抛物线的顶点,点 的坐标为 .
(1)求线段 的长;
(2)点 为线段 上方抛物线上的任意一点,过点 作 的垂线交 于点 ,点 为 轴上一点,当 的面积最大时,求 的最小值;
(3)在(2)中, 取得最小值时,将 绕点 顺时针旋转 后得到△ ,过点 作 的垂线与直线 交于点 ,点 为抛物线对称轴上的一点,在平面直角坐标系中是否存在点 ,使以点 , , , 为顶点的四边形为菱形,若存在,请直接写出点 的坐标,若不存在,请说明理由.
对任意一个四位数 ,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称 为“极数”.
(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;
(2)如果一个正整数 是另一个正整数 的平方,则称正整数 是完全平方数.若四位数 为“极数”,记 ,求满足 是完全平方数的所有 .