如图所示,一个人用一根长1 m,只能承受46 N拉力的绳子,拴着一个质量为1 kg的小球,在竖直平面内做圆周运动.已知圆心O离地面h="6" m,转动中小球在最低点时绳子断了.求:
(1)绳子断时小球运动的角速度多大?
(2)绳断后,小球落地点与抛出点间的水平距离
如图所示,光滑水平面上放置质量均为M="2" kg的甲、乙两辆小车,两车之间通过一感应开关相连(当滑块滑过两车连接处时,感应开关使两车自动分离,分离时对两车及滑块的瞬时速度没有影响),甲车上表面光滑,乙车上表面与滑块P之间的动摩擦因数μ=0.5。一根轻质弹簧固定在甲车的左端,质量为m="l" kg的滑块P(可视为质点)与弹簧的右端接触但不相连,用一根细线拴在甲车左端和滑块P之间使弹簧处于压缩状态,此时弹簧的弹性势能E0=l0J,弹簧原长小于甲车长度,整个系统处于静止状态,现剪断细线,滑块p滑上乙车后最终未滑离乙车,g取l0m/s2,求:
(1)滑块P滑上乙车前的瞬时速度的大小v1
(2)乙车的最短长度L
如图所示,竖直放置的平行金属板A、B中间开有小孔,小孔的连线沿水平放置的平行金属板C、D的中轴线,某时刻粒子源P发出一质量为m、电荷量为q的带正电的粒子(初速度不计),粒子在A、B间被加速后,进入金属板C、D之间.A、B间的电压UAB =Uo,C、D间的电压UCD=2Uo/3,金属板C、D长度为L,间距d=L/3.在金属板C、D右侧有一个环形带磁场,其圆心与金属板C、D的中心O点重合,内圆半径R1=
L/3,磁感应强度的大小B0 =
,磁感应强度的方向垂直于纸面向内,磁场内圆边界紧靠金属板C、D右端,粒子只在纸面内的运动,粒子的重力不计.
(1)求粒子离开偏转电场时在竖直方向上偏移的距离;
(2)若粒子不能从环形带磁场的右侧穿出,求环形带磁场的最小宽度.
(3)在环形带磁场最小宽度时,求粒子在磁场中运动的时间
如图所示,光滑绝缘水平桌面上固定一绝缘挡板P,质量分别为mA和mB的小物块A和B(可视为质点)分别带有+QA和+QB,的电荷量,两物块由绝缘的轻弹簧相连,一不可伸长的轻绳跨过定滑轮,一端与物块B连接,另一端连接轻质小钩。整个装置处于正交的场强大小为E、方向水平向左的匀强电场和磁感应强度大小为B、方向水平向里的匀强磁场中。物块A、B开始时均静止,已知弹簧的劲度系数为K,不计一切摩擦及AB间的库仑力,物块A、B所带的电荷量不变,B不会碰到滑轮,物块A、 B均不离开水平桌面。若在小钩上挂一质量为M的物块C并由静止释放,可使物块A对挡板P的压力为零,但不会离开P,则
(1)求物块C下落的最大距离;
(2)求小物块C从开始下落到最低点的过程中,小物块B的电势能的变化量,以及弹簧的弹性势能变化量:
(3)若C的质量改为2M,求小物块A刚离开挡板P时小物块B的速度大小,以及此时小物块B对水平桌面的压力。
上海有若干辆超级电容车试运行,运行中无需连接电缆,只需在候客上车间隙充电30秒钟到1分钟,就能行驶3到5公里.假设有一辆超级电容车,质量m=2x103 kg,额定功率P="60" kW.当超级电容车在平直水平路面上行驶时,受到的阻力f是车重的0.1倍,g=10m/s2,问:
(1)超级电容车在此路面上行驶所能达到的最大速度是多少?
(2)若超级电容车从静止开始,保持以0.5m/s2的加速度做匀加速直线运动,则这一过程能维持多长时间?
(3)若超级电容车从静止开始,保持额定功率做加速运动,则经50s已经达到最大速度,求此过程中超级电容车的位移.
如图所示,虚线框内为某种电磁缓冲车的结构示意图,其主要部件为缓冲滑块 K和质量为m的“U”框型缓冲车厢:在车厢的底板上固定着两个水平绝缘导轨PQ、MN,车厢的底板上还固定着电磁铁,能产生垂直于导轨平面并随车厢一起运动的匀强磁场,磁场的磁感应强度为B,设导轨右端QN是磁场的右边界。导轨内的缓冲滑块K由高强度绝缘材料制成,滑块K上绕有闭合矩形线圈abcd,线圈的总电阻为R,匝数为n,ab边长为L。假设缓冲车以速度与障碍物C碰撞后,滑块K立即停下(碰前车厢与滑块相对静止),此后线圈与轨道磁场的作用使车厢减速运动,从而实现缓冲。 假设不计一切摩擦力,求:
(1)滑块K的线圈中感应电动势的最大值
(2)若缓冲车厢向前移动距离L后速度为零
(导轨未碰到障碍物),则此过程线圈abcd中产生的焦耳热
(3)若缓冲车以某一速度(未知)与障碍物C碰撞后,滑块K立即停下,缓冲车厢所受的最大水平磁场力为Fm。缓冲车在滑块K停下后,其速度
随位移
的变化规律满足:
。要使导轨右端不碰到障碍物,则缓冲车与障碍物C碰撞前,导轨右端与滑块K的cd边距离至少多大?