如图所示,粗糙程度均匀的固定绝缘平板下方O点有一电荷量为+Q的固定点电荷。一质量为m,电荷量为-q的小滑块以初速度v0从P点冲上平板,到达K点时速度恰好为零。已知O、P相距L,连线水平,与平板夹角为θ。O、P、K三点在同一竖直平面内且O、K相距也为L,重力加速度为g,静电力常量为k,最大静摩擦力等于滑动摩擦力,小滑块初速度满足条件。
(1)若小滑块刚冲上P点瞬间加速度为零,求小滑块与平板间滑动摩擦系数;
(2)求从P点冲到K点的过程中,摩擦力对小滑块做的功;
(3)满足(1)的情况下,小滑块到K点后能否向下滑动?若能,给出理由并求出其滑到P点时的速度;若不能,给出理由并求出其在K点受到的静摩擦力大小。
如图所示,为一交流发电机和外接负载的示意图,发电机电枢线圈为n匝的矩形线圈,边长= L1,
= L2,绕OO′轴在磁感强度为B的磁场中以角速度ω转动(不计一切摩擦),线圈电阻为r ,外电路负载电阻为R 。试求:
(1)电路中伏特表的示数;
(2)线圈每转动一周,外力所做的功。
两根金属导轨平行放置在倾角为θ=30°的斜面上,导轨左端接有电阻R=10Ω,导轨自身电阻忽略不计。匀强磁场垂直于斜面向上,磁感强度B=0.5T。质量为m=0.1kg,电阻可不计的金属棒ab静止释放,沿导轨下滑(金属棒a b与导轨间的摩擦不计)。如图所示,设导轨足够长,导轨宽度L=2m,金属棒ab下滑过程中始终与导轨接触良好,当金属棒下滑高度h=3m时,速度恰好达到最大值。求此过程中 (g=10m/s2)
(1)金属棒达到的最大速度
(2)电阻中产生的热量。
如图所示,一个变压器(可视为理想变压器)的原线圈接在220 V的市电上,向额定电压为2.20×104 V的霓虹灯供电,使它正常发光.为了安全,需在原线圈回路中接入熔断器,使副线圈电路中电流超过12 mA时,熔丝就熔断.
(1)熔丝的熔断电流是多大?
(2)当副线圈电路中电流为10 mA时,变压器的输入功率是多大?
(18分)如图所示,光滑的绝缘平台水平固定,在平台右下方有相互平行的两条边界MN与PQ,其竖直距离为h=1.7m,两边界间存在匀强电场和磁感应强度为B=0.9T且方向垂直纸面向外的匀强磁场,MN过平台右端并与水平方向呈θ=37°.在平台左端放一个可视为质点的A球,其质量为mA=0.17kg,电量为q=+0.1C,现给A球不同的水平速度,使其飞出平台后恰好能做匀速圆周运动.g取10m/s2.
(1)求电场强度的大小和方向;
(2)要使A球在MNPQ区域内的运动时间保持不变,则A球的速度应满足的条件?(A球飞出MNPQ区域后不再返回)
(3)在平台右端再放一个可视为质点且不带电的绝缘B球,A球以vA0=3m/s的速度水平向右运动,与B球碰后两球均能垂直PQ边界飞出,则B球的质量为多少?
(18分)如图(a)所示,“”型木块放在光滑水平地面上,木块水平表面AB粗糙,光滑表面BC且与水平面夹角为θ=37°.木块右侧与竖直墙壁之间连接着一个力传感器,当力传感器受压时,其示数为正值;当力传感器被拉时,其示数为负值.一个可视为质点的滑块从C点由静止开始下滑,运动过程中,传感器记录到的力和时间的关系如图(b)所示.已知sin37°=0.6,cos37°=0.8,g取10m/s2.求:
(18分)如图(a)所示,“”型木块放在光滑水平地面上,木块水平表面AB粗糙,光滑表面BC且与水平面夹角为θ=37°.木块右侧与竖直墙壁之间连接着一个力传感器,当力传感器受压时,其示数为正值;当力传感器被拉时,其示数为负值.一个可视为质点的滑块从C点由静止开始下滑,运动过程中,传感器记录到的力和时间的关系如图(b)所示.已知sin37°=0.6,cos37°=0.8,g取10m/s2.求:
(1)斜面BC的长度;
(2)滑块的质量;
(3)运动过程中滑块克服摩擦力做的功