下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天
(Ⅰ)求此人到达当日空气重度污染的概率
(Ⅱ)设
是此人停留期间空气质量优良的天数,求
的分布列与数学期望.
(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)
已知数列中,
,前
项和
.
(1) 求数列的通项公式;
(2) 设数列的前
项和为
,是否存在实数
,使得
对一切正整数
都
成立?若存在,求出的最小值;若不存在,请说明理由.
如图,在直三棱柱中,平面
侧面
,且
(1) 求证:;
(2) 若直线与平面
所成的角为
,求锐二面角
的大小。
去年2月29日,我国发布了新修订的《环境空气质量标准》指出空气质量指数在为优秀,各类人群可正常活动.惠州市环保局对我市2014年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为
,
,
,
,由此得到样本的空气质量指数频率分布直方图,如图.
(1) 求的值;
(2) 根据样本数据,试估计这一年度的空气质量指数的平均值;(注:设样本数据第组的频率为
,第
组区间的中点值为
,则样本数据的平均值为
.)
(3) 如果空气质量指数不超过,就认定空气质量为“特优等级”,则从这一年的监测数据中随机抽取
天的数值,其中达到“特优等级”的天数为
,求
的分布列和数学期望.
已知.
(1)求的值;
(2)求的值.
(本小题满分12分) 已知圆,点
,直线
.
(1) 求与圆相切,且与直线
垂直的直线方程;
(2) 在直线上(
为坐标原点),存在定点
(不同于点
),满足:对于圆
上任一点
,都有
为一常数,试求所有满足条件的点
的坐标.