在如下图所示的竖直平面内,物体和带正电的物体用跨过定滑轮的绝缘轻绳连接,分别静止于倾角的光滑斜面上的点和粗糙绝缘水平面上,轻绳与对应平面平行。劲度系数的轻弹簧一端固定在点,一端用另一轻绳穿过固定的光滑小环与相连,弹簧处于原长,轻绳恰好拉直,垂直于斜面。水平面处于场强、方向水平向右的匀强电场中。已知、的质量分别为和,B所带电荷量。设两物体均视为质点,不计滑轮质量和摩擦,绳不可伸长,弹簧始终在弹性限度内,电量不变。取,,。
(1)求所受静摩擦力的大小;
(2)现对施加沿斜面向下的拉力,使以加速度开始做匀加速直线运动。从到的过程中,的电势能增加了。已知沿竖直方向,与水平面间的动摩擦因数。求到达点时拉力的瞬时功率。
如图,与水平面成45°角的平面MN将空间分成I和II两个区域。一质量为m、电荷量为q(q>0)的粒子以速度从平面MN上的
点水平右射入I区。粒子在I区运动时,只受到大小不变、方向竖直向下的电场作用,电场强度大小为E;在II区运动时,只受到匀强磁场的作用,磁感应强度大小为B,方向垂直于纸面向里。求粒子首次从II区离开时到出发点
的距离。粒子的重力可以忽略。
如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行。a、b为轨道直径的两端,该直径与电场方向平行。一电荷为q(q>0)的质点沿轨道内侧运动.经过a点和b点时对轨道压力的大小分别为Na和Nb不计重力,求电场强度的大小E、质点经过a点和b点时的动能。
一电荷量为q(q>0)、质量为m的带电粒子在匀强电场的作用下,在t=0时由静止开始运动,场强随时间变化的规律如图所示。不计重力,求在t=0到t=T的时间间隔内
(1)粒子位移的大小和方向;
(2)粒子沿初始电场反方向运动的时间。
半径为R,均匀带正电荷的球体在空间产生球对称的电场;场强火小沿半径分布如图所示,图中E0已知,E-r曲线下O-R部分的面积等于R-2R部分的面积。
(1)写出E-r曲线下面积的单位;
(2)己知带电球在r≥R处的场强E=kQ/r2,式中k为静电力常量,该均匀带电球所带的电荷量Q为多大?
(3)求球心与球表面间的电势差△U;
(4)质量为m,电荷量为q的负电荷在球面处需具有多大的速度可以刚好运动到2R处?
如图1所示,宽度为的竖直狭长区域内(边界为
),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为
,
表示电场方向竖直向上。
时,一带正电、质量为
的微粒从左边界上的
点以水平速度
射入该区域,沿直线运动到
点后,做一次完整的圆周运动,再沿直线运动到右边界上的
点。
为线段
的中点,重力加速度为g。上述
、
、
、
、
为已知量。
(1)求微粒所带电荷量和磁感应强度
的大小;
(2)求电场变化的周期;
(3)改变宽度,使微粒仍能按上述运动过程通过相应宽度的区域,求
的最小值。