如图所示:已知过抛物线的焦点F的直线
与抛物线相交于A,B两点。
(1)求证:以AF为直径的圆与x轴相切;
(2)设抛物线在A,B两点处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程;
(3)设过抛物线焦点F的直线
与椭圆
的交点为C、D,是否存在直线
使得
,若存在,求出直线
的方程,若不存在,请说明理由。
某射手在一次射击中射中10环、9环、8环、7环、7环以下的概率分别为0.24、0.28、0.19、0.16、0.13.计算这个射手在一次射击中:
(1)至少射中7环的概率;
(2)射中环数不足8环的概率.
设集合,
.
(Ⅰ) 若,求实数
的取值范围;
(Ⅱ) 当时,不存在元素
使
与
同时成立,求实数
的取值范围.
已知抛物线的焦点为
,过点
的直线
与
相交于
两点,点
关于
轴的对称点为
.
(Ⅰ)证明:点在直线
上;
(Ⅱ)设,求
的平分线与
轴的交点坐标.
已知函数.
(Ⅰ)当时,求函数
的极大值;
(Ⅱ)若函数存在单调递减区间,求实数
的取值范围.
如图,在三棱锥中,
,
,
为线段
的中点.
(Ⅰ)求证:;
(Ⅱ)求二面角的余弦值.