游客
题文

如图,在平面直角坐标系xOy中,点A的坐标为(-2,0),等边三角形AOC经过平移或轴对称或旋转对称都可以得到△OBD。

(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是       个单位长度;△AOC与△OBD关于直线对称,则对称轴是       ;△AOC绕原点O顺时针旋转得到△OBD,则旋转角可以是       度;
(2)连接AD,交OC于点E,求∠AEO的度数。

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心 对称式和轮换对称式
登录免费查看答案和解析
相关试题

(年湖南益阳10分)如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线经过点A、B,并与x轴交于另一点C,其顶点为P.

(1)求a,k的值;
(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;
(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.

(年湖南湘西22分)如图,抛物线y=ax2+bx+c关于y轴对称,它的顶点在坐标原点O,点B(2,)和点C(﹣3,﹣3)两点均在抛物线上,点F(0,)在y轴上,过点(0,)作直线l与x轴平行.

(1)求抛物线的解析式和直线BC的解析式.
(2)设点D(x,y)是线段BC上的一个动点(点D不与B,C重合),过点D作x轴的垂线,与抛物线交于点G.设线段GD的长度为h,求h与x之间的函数关系式,并求出当x为何值时,线段GD的长度h最大,最大长度h的值是多少?
(3)若点P(m,n)是抛物线上位于第三象限的一个动点,连接PF并延长,交抛物线于另一点Q,过点Q作QS⊥l,垂足为点S,过点P作PN⊥l,垂足为点N,试判断△FNS的形状,并说明理由;
(4)若点A(﹣2,t)在线段BC上,点M为抛物线上的一个动点,连接AF,当点M在何位置时,MF+MA的值最小,请直接写出此时点M的坐标与MF+MA的最小值.

(2014年湖北天门学业10分)某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果每千克的利润为3元,那么每天可售出250千克.
小红:如果以13元/千克的价格销售,那么每天可获取利润750元.
【利润=(销售价-进价)销售量】
(1)请根据他们的对话填写下表:

销售单价x(元/kg)
10
11
13
销售量y(kg)



(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;
(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?

(年湖北武汉12分)如图,已知直线AB:与抛物线交于A、B两点,
(1)直线AB总经过一个定点C,请直接写出点C坐标;
(2)当时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;
(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.

(年湖北鄂州10分)大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:

x(天)
1
2
3

50
p(件)
118
116
114

20

销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时
(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.
(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.
(3)这50天中,该超市第几天获得利润最大?最大利润为多少?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号