游客
题文

(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

如图,在△ABC中,AD为BC边上中线.试说明AD<(AB+AC).

如图,已知AB、CD相交于O,△ACO≌△BDO,AE=BF,试说明CE=FD.

如图,已知:AB=CD,AC=BD,试说明∠A=∠D.

如图,已知AB=AC,AE=AD,BD=CE,说出∠1=∠2成立的理由.

如图,把△ABC绕点C顺时针旋转35°,得到△A′B′C′,A′B′交AC于D,已知∠A′DC=90°,求∠A的度数.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号