如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为点C、D,连结CD、QC.
(1)求当t为何值时,点Q与点D重合?
(2)设△QCD的面积为S,试求S与t之间的函数关系,并求S的最大值?
(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.
在研究气体压强和体积关系的物理实验中,一个气球内充满了一定质量的气体,实验中气体温度保持不变,实验人员记录了实验过程中气球内的气体压强p(kPa)与气体体积V(m3)的数据如下表:
V(m3) |
0.8 |
1.2 |
1.6 |
2.0 |
2.4 |
p(kPa) |
120 |
80 |
60 |
48 |
40 |
(1)根据表中的数据判断p是V的________.(①一次函数;②反比例函数;③二次函数.填序号即可)
(2)确定p与V的函数关系式,并在如图所示的坐标系内画出该函数的大致图象;
(3)当气球内的气体压强大于140kPa时,气球将爆炸,为了安全起见,气体的体积V(m3)的取值范围是________.
为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图).现测得药物8分钟燃烧完毕,此时室内空气中每立方米的含药量为6毫克.请根据题中提供的信息,解答下列问题:
(1)药物燃烧时和药物燃烧后,分别求出y关于x的函数表达式及自变量x的取值范围;
(2)研究表明,当空气中每立方米的含药量低于1.6毫克时,学生方可进教室,那么从消毒开始,至少需要经过多少分钟,学生才能回到教室?
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?
工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料煅烧到800℃,然后停止煅烧进行锻造操作.经过8min时,材料温度降为600℃.煅烧时,温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图),已知该材料初始温度是32℃.
(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;
(2)根据工艺要求,当材料温度低于480℃时,须停止操作,那么锻造的操作时间有多长?
某工作人员打算利用不锈钢条制作一个面积为0.8m2的矩形模具.设矩形模具的长为ym,宽为xm.
(1)写出y与x之间的函数关系式,并说明y与x之间是什么函数关系;
(2)若使模具长比宽多1.6m.已知每米这种不锈钢条的价格为6元,制作这个模具共需花多少钱?
蓄电池的电压为定值.使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示.
(1)求这个反比例函数的表达式;
(2)当R=10Ω时,电流能是4A吗?为什么?