2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心.“一方有难,八方支援”,某厂计划加工1500顶帐篷支援灾区人民,在加工了300顶帐篷后,由于救灾需要,工作效率提高到原来的1.5倍,结果提前4天完成了任务,求原来每天加工多少顶帐篷?
身高1.6米的小明想利用“勾股定理”测得下图风筝CE的高度,于是他测得BD的长度为25米,并根据手中剩余线的长度计算出风筝线BC的长为65米.求风筝的高度CE.
一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三方面为选手打分,各项成绩均按百分制,进入决赛的两名选手的单项成绩如下表所示:
选手 |
演讲内容 |
演讲能力 |
演讲效果 |
甲 |
85 |
95 |
95 |
乙 |
95 |
85 |
95 |
演讲内容 |
演讲能力 |
演讲效果 |
|
甲 |
85 |
95 |
95 |
乙 |
95 |
85 |
95 |
(1)如果认为这三方面的成绩同等重要,从他们的成绩看,谁将胜出?
(2)如果按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例来计算甲、乙的平均成绩,那么谁将胜出?
解下列方程组(本题8分,每题4分):
(1);(2)
.
(本题14分)如图,矩形AOCD的顶点A的坐标是(0,4).动点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,同时动点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.当其中一点到达终点时,另一点也停止运动.设运动时间为t(秒),当t=2(秒)时,PQ=.解答下列问题:
(1)求点D的坐标;
(2)直接写出t的取值范围;
(3)连接AQ并延长交x轴于点E,把AQ沿AD翻折,点Q落在CD延长线上点F处,连接EF.
①t为何值时,PQ∥AF;
②△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.
(本题12分)如图,抛物线与x轴交A、B两点(A点在B点左侧),直线
与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,连接EA,EC,求△ACE面积最大值;
(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.