一质量m=0.5 kg的滑块以一定的初速度冲上一倾角为30°足够长的斜面,某同学利用DIS实验系统测出了滑块冲上斜面过程中多个时刻的瞬时速度,如图所示为通过计算机绘制出的滑块上滑过程的v-t图象(g取10 m/s2).求:
(1)滑块冲上斜面过程中加速度的大小;
(2)滑块与斜面间的动摩擦因数;
(3)判断滑块最后能否返回斜面底端.若能返回,求出滑块返回斜面底端时的动能;若不能返回,求出滑块所停位置.
如图所示,地面和半圆轨道面均光滑。质量M =" 1kg" 、长L = 4m的小车放在地面上,其右端与墙壁的距离为S=3m,小车上表面与半圆轨道最低点P的切线相平。现有一质量m = 2kg的滑块(视为质点)以v0 = 6m/s的初速度滑上小车左端,带动小车向右运动。小车与墙壁碰撞时即被粘在墙壁上,已知滑块与小车表面的滑动摩擦因数μ =" 0.2" ,g取10m/s2。
(1)求小车与墙壁碰撞时的速度;
(2)要使滑块在半圆轨道上运动时不脱离,求半圆轨道的半径R的取值.
试将一天的时间记为T,地球半径记为R,地球表面重力加速度为g.(结果可保留根式)
(1)试求地球同步卫星P的轨道半径RP;
(2)若已知一卫星Q位于赤道上空且卫星Q运动方向与地球自转方向相反,赤道上一城市A的人平均每三天观测到卫星Q四次掠过他的上空,试求Q的轨道半径RQ
如图所示,在光滑的水平面上有一长为L的木板B,其右侧边缘放有小滑块C,与木板B完全相同的木板A以一定的速度向左运动,与木板B发生正碰,碰后两者粘在一起并继续向左运动,最终滑块C刚好没有从木板上掉下.已知木板A、B和滑块C的质量均为m,C与A、B之间的动摩擦因数均为μ.求:
①木板A与B碰前的速度v0;
②整个过程中木板B对木板A的冲量I.
如图甲所示,长木板B固定在光滑水平面上;可看做质点的物体A静止叠放在B的最左端,现用F=6N的水平力向右拉物体A,A经过5s运动到B的最右端,其v-t图象如图乙所示,已知A、B的质量分别为lkg和4kg,A、B间的最大静摩擦力等于滑动摩擦力.
(1)求物体A、B间的动摩擦因数;
(2)若B不固定,求A运动到B的最右端所用的时间.
如图所示,BC为半径等于m竖直放置的光滑细圆管,O为细圆管的圆心,在圆管的末端C连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m=0.5kg的小球从O点正上方某处A点以v0水平抛出,恰好能垂直OB从B点进入细圆管,小球从进入圆管开始受到始终竖直向上的力F=5N的作用,当小球运动到圆管的末端C时作用力F立即消失,小球能平滑地冲上粗糙斜面.(g=10m/s2)求:
(1)小球从O点的正上方某处A点水平抛出的初速度v0为多少?OA的距离为多少?
(2)小球在圆管中运动时对圆管的压力是多少?
(3)小球在CD斜面上运动的最大位移是多少?