如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.
(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;
(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;
(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.
在平面直角坐标系中,抛物线 过点 , ,与 轴交于点 ,顶点为点 .
(1)求抛物线的解析式;
(2)点 为直线 上的一个动点,连接 ;
①如图1,是否存在点 ,使 ?若存在,求出所有满足条件的点 的坐标;若不存在,请说明理由;
②如图2,点 在 轴上方,连接 交抛物线于点 , ,点 在第三象限抛物线上,连接 ,当 时,请直接写出点 的坐标.
如图,在矩形 中, ,点 是线段 延长线上的一个动点,连接 ,过点 作 交射线 于点 .
(1)如图1,若 ,则 与 之间的数量关系是 ;
(2)如图2,若 ,试判断 与 之间的数量关系,写出结论并证明;(用含 的式子表示)
(3)若 ,连接 交 于点 ,连接 ,当 时,求 的长.
某超市销售一款"免洗洗手液",这款"免洗洗手液"的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款"免洗洗手液"的销售单价为 (元 ,每天的销售量为 (瓶 .
(1)求每天的销售量 (瓶 与销售单价 (元 之间的函数关系式;
(2)当销售单价为多少元时,销售这款"免洗洗手液"每天的销售利润最大,最大利润为多少元?
如图, 中, , 为 的角平分线,以点 为圆心, 为半径作 与线段 交于点 .
(1)求证: 为 的切线;
(2)若 , ,求 的长.
如图,海中有一个小岛 ,它周围10海里内有暗礁,渔船跟踪鱼群由东向西航行,在 点测得小岛 在北偏西 方向上,航行12海里到达 点,这时测得小岛 在北偏西 方向上,如果渔船不改变方向继续向西航行,有没有触礁的危险?并说明理由.(参考数据: