游客
题文

如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).

(1)求直线BD和抛物线的解析式.
(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.
(3)在抛物线上是否存在点P,使SPBD=6?若存在,求出点P的坐标;若不存在,说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

某校为了解2014年八年级学生课外书籍借阅情况,从中随机抽取了50名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这50名学生借阅总册数的40%.

类别
科普类
教辅类
文艺类
其他
册数(本)
168
105
m
32


(1)表格中字母m的值等于
(2)扇形统计图中“教辅类”所对应的圆心角α的度数为°;
(3)该校2014年八年级有600名学生,请你估计该年级学生共借阅教辅类书籍约多少本?

为发扬中华民族传统美德,弘扬社会正气,倡导见义勇为,我国于1993年6月1日成立中华见义勇为基金会,我市甲、乙两公司为“中华见义勇为基金会”各捐款18000元,已知甲公司的人数比乙公司的人数少25%,且甲公司比乙公司人均多捐款30元,问甲、乙公司各有多少人?

(1)解方程:-x2+4x=2
(2)解不等式组:

(1)计算:|-3|+(-2015)0-
(2)计算:(x-

如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.

(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;
(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号