如图甲所示,两平行金属板的板长不超过0.2 m,板间的电压u随时间t变化的图线如图乙所示,在金属板右侧有一左边界为MN、右边无界的匀强磁场,磁感应强度,方向垂直纸面向里.现有带正电的粒子连续不断地以速度
,沿两板间的中线
平行金属板射入电场中,磁场边界MN与中线
垂直.已知带电粒子的比荷
,粒子所受的重力和粒子间的相互作用力均忽略不计.
(1)在每个粒子通过电场区域的时间内,可以把板间的电场强度看作是恒定的.试说明这种处理能够成立的理由.
(2)设时刻射入电场的带电粒子恰能从平行金属板边缘射出,求该带电粒子射出电场时的速度大小.
(3)对于所有经过电场射入磁场的带电粒子,设其射入磁场的入射点和从磁场射出的出射点间的距离为d,试判断d的大小是否随时间而变化?若不变,证明你的结论;若变,求出d的变化范围.
如图所示,参加某电视台娱乐节目的选手从较高的平台上以水平速度跃出后,落在水平传送带上。已知平台与传送带的高度差H=1.8m,水池宽度s0=1.2m,传送带AB间的距离L0=20m。由于传送带足够粗糙,假设选手落到传送带上后瞬间相对传送带静止,经过△t=1.0s反应时间后,立刻以a=2m/s2恒定向右的加速度跑至传送带最右端。
(1)若传送带静止,选手以v0=3m/s的水平速度从平台跃出,求这位选手落在传送带上距离A点的距离。
(2)求刚才那位选手从开始跃出到跑至传送带右端所经历的时间。
(3)若传送带以v=1m/s的恒定速度向左运动,选手要能到达传送带右端,则他从高台上跃出的水平速度v1至少为多大?(g=10m/s2)
中央电视台近期推出了一个游戏节目——推矿泉水瓶.选手们从起点开始用力推瓶一段时间后,放手让瓶向前滑动,若瓶最后停在桌上有效区域内,视为成功;若瓶最后不停在有效区域内或在滑行过程中倒下均视为失败.其简化模型如图所示,AC是长度为L1=5 m的水平桌面,选手们可将瓶子放在A点,从A点开始用一恒定不变的水平推力推瓶,BC为有效区域.已知BC长度为L2=1 m,瓶子质量为m=0.5 kg,瓶子与桌面间的动摩擦因数μ=0.4.某选手作用在瓶子上的水平推力F=20 N,瓶子沿AC做直线运动,(g取10 m/s2)假设瓶子可视为质点,那么该选手要想游戏获得成功,试问:
(1)推力作用在瓶子上的时间最长不得超过多少?
(2)推力作用在瓶子上的距离最小为多少?
如图所示,两个用轻线相连的位于光滑水平面上的物块,质量分别为m1和m2,拉力F1和F2方向相反,与轻线沿同一水平直线,且F1>F2。试求在两个物块运动过程中轻线的拉力T。
两根平行金属导轨固定倾斜放置,与水平面夹角为37°,相距d=0.5 m,a、b间接一个电阻为R=1.5 Ω.在导轨上c、d两点处放一根质量m=0.05 kg的金属棒,bc长L=1 m,金属棒与导轨间的动摩擦因数μ=0.5.金属棒与导轨接触点间电阻r=0.5 Ω, 金属棒被两个垂直于导轨的木桩顶住而不会下滑,如图甲所示.在金属导轨区域加一个垂直导轨斜向下的匀强磁场,磁场随时间的变化关系如图乙所示.重力加速度g=10 m/s2.(sin 37°=0.6,cos 37°=0.8).求:
(1)0~1.0 s内回路中产生的感应电动势大小;
(2)t=0时刻,金属棒所受的安培力大小;
(3)在磁场变化的全过程中,若金属棒始终没有离开木桩而上升,则图乙中t0的最大值;
(4)通过计算在图中画出0~t0max内金属棒受到的静摩擦力随时间的变化图象.
如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距L=0.5m,左端接有阻值R=0.3Ω的电阻,一质量m=0.1kg,电阻r=0.1Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4T,棒在水平向右的外力作用下,由静止开始做匀加速直线运动,当棒运动的位移x=9m时速度达到6m/s,此时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1:Q2=2:1,导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触,求
(1) 棒在匀加速运动过程中,通过电阻R的电荷量q
(2) 金属棒MN做匀加速直线运动所需外力随时间变化的表达式
(3) 外力做的功WF