游客
题文

如图,在某小区的休闲广场有一个正方形花园ABCD,为了便于观赏,要在AD、BC之间修一条小路,在AB、DC之间修另一条小路,使这两条小路等长.设计师给出了以下几种设计方案:
①如图1,E是AD上一点,过A作BE的垂线,交BE于点O,交CD于点H,则线段AH、BE为等长的小路;

②如图2,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H,则线段GH、BE为等长的小路;

③如图3,过正方形ABCD内任意一点O作两条互相垂直的直线,分别交AD、BC于点E、F,交AB、CD于点G、H,则线段GH、EF为等长的小路;

根据以上设计方案,解答下列问题:
(1)你认为以上三种设计方案都符合要求吗?
(2)要根据图1完成证明,需要证明△   ≌△   ,进而得到线段  =  
(3)如图4,在正方形ABCD外面已经有一条夹在直线AD、BC之间长为EF的小路,想在直线AB、DC之间修一条和EF等长的小路,并且使这条小路的延长线过EF上的点O,请画草图(加以论述),并给出详细的证明.

科目 数学   题型 解答题   难度 较难
知识点: 三角形的五心 圆内接四边形的性质
登录免费查看答案和解析
相关试题

(1)求值: (2)求值:

求下列式子的值:
(— 4)2 +2

某市政府计划修建一处公共服务设施,使它到三所公寓A、B、C 的距离相等。
(1)若三所公寓A、B、C的位置如图所示,请你在图中确定这处公共服务设施(用点P表示)的位置(尺规作图,保留作图痕迹,不写作法);

(2)若∠BAC=56º,则∠BPC= º.

如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:( 用直尺画图)

(1)画出格点△AB C(顶点均在格点上)关于直线DE对称的△A1B1C1
(2)在DE上画出点Q,使最小。

如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG。请探究:

(1)线段AE与CG是否相等?请说明理由。
(2)若设AE=x,DH=y,当x取何值时,y最大?
(3)连接BH,当点E运动到AD的何位置时,△BEH∽△BAE?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号