如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:
(1)求抛物线的解析式.
(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.
注:抛物线y=ax2+bx+c(a≠0)的对称轴是.
以△ABC的AB、AC为边分别作正方形ADEB、ACGF,连接DC、BF。
(1)求证:CD=BF。
(2)利用旋转的观点,在此题中,△ADC可看成由哪个三角形绕哪点旋转多少角度得到的。
现有一块长20cm,宽10cm的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为56cm2的无盖长方体盒子,求出剪去的小正方形的边长?
如图所示的正方形网格中,△的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:
(1)以点为旋转中心,将△
绕点
顺时针旋转
得△
,画出△
。
(2)画出△关于坐标原点
成中心对称的△
,并写出点A2、B2、C2各点坐标。
已知点(
,
)在抛物线
(
)上,求当
时
的值。
解方程:
(1)
(2)