游客
题文

如图,抛物线y=a(x﹣h)2+k经过点A(0,1),且顶点坐标为B(1,2),它的对称轴与x轴交于点C.

(1)求此抛物线的解析式.
(2)在第一象限内的抛物线上求点P,使得△ACP是以AC为底的等腰三角形,请求出此时点P的坐标.
(3)上述点是否是第一象限内此抛物线上与AC距离最远的点?若是,请说明理由;若不是,请求出第一象限内此抛物线上与AC距离最远的点的坐标.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

(本题9分)如图,在□ABCD中,过点B作BE⊥CD于E,F为AE上一点,且∠BFE=∠C.

(1)求证:△ABF∽△EAD;
(2)若AB=4,∠BAE=30º,求AE的长;
(3)在(1)(2)的条件下,若AD=3,求BF的长.

(本题20分,每题5分)计算:
(1)
(2)
(3)
(4)

如图,抛物线与y轴相交于点A(0,2),与x轴相交于B(4,0)
C(,0)两点.直线l经过A、B两点.

(1)分别求出直线l和抛物线相应的函数表达式;
(2)平行于y轴的直线x=2交抛物线于点P,交直线l于点D.① 直线x=t(0≤t≤4)与直线l相交于点E,与抛物线相交于点F.若EF:DP=3:4, 求t的值;② 将抛物线沿y轴上下平移,所得的抛物线与y轴交于点A′,与直线x=2交于点P′.当P′O平分∠A′P′P时,求平移后的抛物线相应的函数表达式.

如图, 在四边形ABCD中,AD∥BC,∠D=90°,BC=50,AD=36,CD="27." 点E从C出发以每秒5个单位长度的速度向B运动,点F从A出发,以每秒4个单位长度的速度向D运动.两点同时出发,当其中一个动点到达终点时,另一个动点也随之停止运动.过点F作FG⊥BC,垂足为G,连结AC交FG于P,连结EP.

(1)点E、F中,哪个点最先到达终点?
(2)求△PEC的面积S与运动时间t的函数表达式,并写出自变量t的取值范围. 当t为何值时,S的值最大;
(3)当△CEP为锐角三角形时,求运动时间t的取值范围.

如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.

(1)判断直线BC与⊙O的位置关系,并说明理由;
(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号