在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).
(1)当△ABC三边分别为6、8、9时,△ABC为 三角形;当△ABC三边分别为6、8、11时,△ABC为 三角形.
(2)猜想,当a2+b2 c2时,△ABC为锐角三角形;当a2+b2 c2时,△ABC为钝角三角形.
(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.
化简二次根式:(1)
(2)
(
<0)
问题1已知:如图1,三角形ABC中,点D是AB边的中点,AE⊥BC,BF⊥AC,垂足分别为点E,F,AE,BF交于点M,连接DE,DF.若DE=
DF,则
的值为____
_.
拓展
问题2已知:如图2,三角形ABC中,CB=CA,点D是AB边的中点,点M在三角形ABC的内部,且∠MAC=∠MBC,过点M分别作ME⊥BC,MF⊥AC,垂足分别为点E,F,连接DE,DF.求证:DE=DF.推广
问题3如图3,若将上面问题2中的条件“CB=CA”变为“CB≠CA”,其他条件不变,试探究DE与DF之间的数量关系,并证明你的结论.
已知:如图1,平面直角坐标系中,四边形OABC是矩形,点A,C的坐标分别为(6,0),(0,2).点D是线段BC上的一个动点(点D与点B,C不重合),过点D作直线
=-
+
交折线O-A-B于点E.
(1)在点D运动的过程中,若△ODE的面积为S,求S与
的函数关系式,
并写出自变量的取值范围;
(2)如图2,当点E在线段OA上时,矩形OABC关于直线DE对称的图形为矩形O′A′B′C′,C′B′分别交CB,OA于点D,M,O′A′分别交CB,OA于点N,E.探究四边形DMEN各边之间的数量关系,并对你的结论加以证明;
(3)问题(2)
中的四边形DMEN中,ME的长为____________.
已知:如图1,直线与双曲线
交于A,B两点,且点A的坐标为(
).
(1)求双曲线
的解析式;
(2)点C(
)在双曲线
上,求△AOC的面积;
(3)过原点O作另一条直线
与双曲线
交于P,Q两点,且点P在第一象限.若由点A,P,B,Q为顶点组成的四边形的面积为20,请直接写出所有符合条件的点P的坐标.
已知:如图,梯形ABCD中,AD∥BC,∠B=90°,AD=,BC=
,DC=
,
且,点M是AB边的中点.
(1)求证:CM⊥DM;
(2)求点M到CD边的距离.(用含
,
的式子表示)