如图,在平面直角坐标系中,有一条直线l:与x轴、y轴分别交于点M、N,一个高为3的等边三角形ABC,边BC在x轴上,将此三角形沿着x轴的正方向平移.
(1)在平移过程中,得到△A1B1C1,此时顶点A1恰落在直线l上,写出A1点的坐标 ;
(2)继续向右平移,得到△A2B2C2,此时它的外心P恰好落在直线l上,求P点的坐标;
(3)在直线l上是否存在这样的点,与(2)中的A2、B2、C2任意两点能同时构成三个等腰三角形?如果存在,求出点的坐标;如果不存在,说明理由.
如图,在△ABC中,点D在AC上,DA=DB,∠C=∠DBC,以AB为直径的交AC于点E,F是
上的点,且AF=BF.
(1)求证:BC是的切线;
(2)若sinC=,AE=
,求sinF的值和AF的长.
列方程解应用题:
为提高运输效率、保障高峰时段人们的顺利出行,地铁公司在保证安全运行的前提下,缩短了发车间隔,从而提高了运送乘客的数量. 缩短发车间隔后比缩短发车间隔前平均每分钟多运送乘客50人,使得缩短发车间隔后运送14400人的时间与缩短发车间隔前运送12800人的时间相同,那么缩短发车间隔前平均每分钟运送乘客多少人?
如图,在□ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形,若AC=8,AB=5,求ED的长.
如图,P是反比例函数(
>0)的图象上的一点,PN垂直
轴于点N,PM
垂直y轴于点M,矩形OMPN的面积为2,且ON=1,一次函数的图象经过点P.
(1)求该反比例函数和一次函数的解析式;
(2)设直线与
轴的交点为A,点Q在y轴上,当△QOA的面积等于矩形OMPN的面积的
时,直接写出点Q的坐标.
.已知,求
的值.