在一次综合实践活动中,小明要测某地一座古塔AE的高度,如图,已知塔基AB的高为4m,他在C处测得塔基顶端B的仰角为30°,然后沿AC方向走5m到达D点,又测得塔顶E的仰角为50°.(人的身高忽略不计)
(1)求AC的距离;(结果保留根号)
(2)求塔高AE.(结果保留整数)
甲、乙两辆汽车分别从A、B两地同时出发,沿同一条公路相向而行.乙车出发2h休息.与甲车相遇.继续行驶.设甲、乙两车与B地的距离y(km)与行驶的时间x(h)之间的函数图象如图所示.
(1)写出甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式 ;
(2)乙车休息的时间为 ;
(3)写出休息前,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式 ;休息后,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式 ;
(4)求行驶多长时间两车相距100km.
根据图中给出的信息,解答下列问题:
(1)放入一个小球水面升高 cm,放入一个大球水面升高 cm;
(2)如果要使水面上升到50cm,应放入大球、小球各多少个?
如图,已知:DE⊥AO于点E,BO⊥AO于点O,∠CFB=∠EDO,证明:CF∥DO.
已知:正比例函数y=(m﹣1)的图象在第二、四象限,求m的值.
计算: