2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:)
(1)计算:(-1)2012-| -7 |+×(
-π)0+(
)-1;
(2))化简:
已知, BC∥OA,∠B=∠A=100°,试回答下列问题:
如图1所示,求证:OB∥AC.
(2)如图2,若点E、F在线段BC上,且满足∠FOC=∠AOC ,并且OE平分∠BOF.则∠EOC的度数等于_______;(在横线上填上答案即可).
(3)在(2) 的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.
(4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA度数等于.(在横线上填上答案即可).
如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=80°,
试求:(1)∠EDC的度数;
(2)若∠BCD=n°,试求∠BED的度数.(用含n的式子表示)
如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.
已知:如图, AC∥DF,直线AF分别与直线BD、CE 相交于点G、H,∠1=∠2,
求证: ∠C=∠D.
解:∵∠1=∠2(已知)
∠1=∠DGH(),
∴∠2=_________(等量代换)
∴// ___________( 同位角相等,两直线平行)
∴∠C=__( 两直线平行,同位角相等 )
又∵AC∥DF()
∴∠D=∠ABG ()
∴∠C=∠D ( )