在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.
(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;
(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.
如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.
(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)
(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)
已知:直角坐标系xoy中,将直线沿y轴向下平移3个单位长度后恰好经过B(-3,0)及y轴上的C点.若抛物线
与
轴交于A,B两点(点A在点B的右侧),且经过点C,
(1)求直线的解析式;
(2)求抛物线的解析式;
(3)设抛物线的顶点为,点
在抛物线的对称轴上,且
,求点
的坐标;
已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边长作正方形PQMN,使点M落在反比例函数的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点
在第二象限;
(1)如图所示,点P坐标为(1,0),图中已画出一个符合条件的正方形PQMN,请你在图中画出符合条件的另一个正方形,并写出点
的坐标;
(2)请你通过改变P点的坐标,对直线M的解析式y﹦kx+b进行探究:
①k=;
②若点P的坐标为(m,0),则b=;
(3)依据(2)的规律,如果点P的坐标为(8,0),请你求出点和点M的坐标.
已知:如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于D,DE
与⊙O相切,交CB的延长线于E.
⑴ 判断直线AC和DE是否平行,并说明理由;
⑵ 若∠A=30°,BE=1cm,分别求线段DE和 的长。(直接写出最后结果).
如图(1),在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠ECD=,AB与CE交于F,ED与AB、BC分别交于M、H.
(1)求证:CF=CH;
(2)如图(2),△ABC不动,将△EDC绕点C旋转到∠BCE=时,试判断四边形ACDM是什么四边形?并证明你的结论.