某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.
根据统计图提供的信息解答下列问题:
(1)补全频数分布直方图,并指出这个样本数据的中位数落在第 小组;
(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;
(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?
如图,直线分别交
轴,
轴于
两点,以
为边作矩形
,
为
的中点.以
,
为斜边端点作等腰直角三角形
,点
在第一象限,设矩形
与
重叠部分的面积为
.
(1)求点的坐标;
(2)当值由小到大变化时,求
与
的函数关系式;
(3)若在直线上存在点
,使
等于
,求出
的取值范围;
(4)在值的变化过程中,若
为等腰三角形,请直接写出所有符合条件的
值.
已知某种水果的批发单价与批发量的函数关系如图(1)所示.
(1)请说明图中①、②两段函数图象的实际意义;
(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果;
(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.
已知:如图,正比例函数的图象与反比例函数
的图象交于点
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当取何值时,反比例函数的值大于正比例函数的值?
(3)是反比例函数图象上的一动点,其中
过点
作直线
轴,交
轴于点
;过点
作直线
轴交
轴于点
,交直线
于点
.当四边形
的面积为6时,请判断线段
与
的大小关系,并说明理由.
如图所示,已知:中,
.
(1)尺规作图:作的平分线
交
于点
(只保留作图痕迹,不写作法);
(2)在(1)所作图形中,将沿某条直线折叠,使点
与点
重合,折痕
交
于点
,交
于点
,连接
,再展回到原图形,得到四边形
.
①试判断四边形AEDF的形状,并证明;
②若AC=8,CD=4,求四边形AEDF的周长和BD的长.
如图所示,、
两城市相距
,现计划在这两座城市间修建一条高速公路(即线段
),经测量,森林保护中心
在
城市的北偏东
和
城市的北偏西
的方向上,已知森林保护区的范围在以
点为圆心,
为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:
)