游客
题文

如图,抛物线y=ax2+bx+3与x轴相交于点A(﹣1,0)、B(3,0),与y轴相交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF.

(1)求抛物线的解析式;
(2)当四边形ODEF是平行四边形时,求点P的坐标;
(3)过点A的直线将(2)中的平行四边形ODEF分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

(.天津市,第22题,10分)(本小题10分)
如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一直线上. 小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°. 已知点D到地面的距离DE为1.56m,EC =21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数点后一位).参考数据:tan47°≈1.07,tan42°≈0.90.

(.重庆市B卷,第25题,12分)在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.

(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;
(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF扔与线段AC相交于点F.求证:
(3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线交与点F,作DN⊥AC于点N,若DN=FN,求证:.

(.重庆市B卷,第20题,7分)如图,△ABC和△EFD分别在线段AE的两侧,点C,D在线段AE上,AC=DE,AB=EF,AB∥EF.
求证:BC=FD

(.重庆市A卷,第25题,12分)如图1,在△ABC中,ACB=90°,BAC=60°,点E是∠BAC角平分线上一点,过点E作AE的垂线,过点A作AB的线段,两垂线交于点D,连接DB,点F是BD的中点.DH⊥AC,垂足为H,连接EF,HF。

2图1图2
(1)如图1,若点H是AC的中点,AC=,求AB,BD的长。
(2)如图1,求证:HF=EF。
(3)如图2,连接CF,CE,猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由。

(.重庆市A卷,第20题,7分)如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,B=E。
求证:ADB=FCE.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号