如图,已知抛物线与直线
交于点O(0,0),
。点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E。
(1)求抛物线的函数解析式;
(2)若点C为OA的中点,求BC的长;
(3)以BC,BE为边构造条形BCDE,设点D的坐标为(m,n),求m,n之间的关系式。
如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.
(1)求证:△DCE∽△BCA;
(2)若AB=3,AC=4.求DE的长.
在一个布口袋里装着白、红、黑三种颜色的小球,它们除颜色之外没有任何其它区别,其中有白球3只、红球2只、黑球1只.袋中的球已经搅匀.
(1)闭上眼睛随机地从袋中取出1只球,求取出的球是黑球的概率;
(2)若取出的第1只球是红球,将它放在桌上,闭上眼睛从袋中余下的球中再随机地取出1只球,这时取出的球还是红球的概率是多少?
(3)若取出一只球,将它放回袋中,闭上眼睛从袋中再随机地取出1只球,两次取出的球都是白球概率是多少?(用列表法或树状图法计算)
解方程:.
化简或求值
(1)
(2),其中a=﹣
,b=1.
如图,以△ABC的三边为边,在BC的同侧作三个等边△ABD、△BEC、△ACF.
(1)判断四边形ADEF的形状,并证明你的结论;
(2)当△ABC满足什么条件时,四边形ADEF是菱形?是矩形?