中心均开有小孔的金属板C、D与半径为d的圆形单匝金属线圈连接,圆形框内有垂直纸面的匀强磁场,大小随时间变化的关系为B=kt(k未知且k>0),E、F为磁场边界,且与C、D板平行。D板右方分布磁场大小均为B0,方向如图所示的匀强磁场。区域Ⅰ的磁场宽度为d,区域Ⅱ的磁场宽度足够。在C板小孔附近有质量为m、电量为q的负离子由静止开始加速后,经D板小孔垂直进入磁场区域Ⅰ,不计离子重力。
(1)判断圆形线框内的磁场方向;
(2)若离子从C板出发,运动一段时间后又恰能回到C板出发点,求离子在磁场中运动的总时间;
(3)若改变圆形框内的磁感强度变化率k,离子可从距D板小孔为2d的点穿过E边界离开磁场,求圆形框内磁感强度的变化率k是多少?
如图所示,两个界面S1和S2互相平行,间距为d,将空间分为三个区域。I和III两区域内有方向指向纸内的匀强磁场,磁感应强度分别为B1和B2。区域II内是匀强电场E,方向从S1垂直指向S2。一质量为m、电量为-q的粒子(重力不计)以平行于电场线的初速度v0,从与S1相距为d/4的O点开始运动,为使该粒子沿图中的轨迹(轨迹的两个半圆的半径相等)求:
(1)磁感应强度B1:B2之比应是多少;
(2)场强E应满足什么条件?
在如图所示的装置中,电源电动势为E,内阻不计,定值电阻为R1,滑动变阻器总阻值为R2,置于真空中的平行板电容器水平放置,极板间距为d。处在电容器中的油滴A恰好静止不动,此时滑动变阻器的滑片P位于中点位置。
(1)求此时电容器两极板间的电压;
(2)求该油滴的电性以及油滴所带电荷量q与质量m的比值;
(3)现将滑动变阻器的滑片P由中点迅速向上滑到某位置,使电容器上的电荷量变化了Q1,油滴运动时间为t;再将滑片从该位置迅速向下滑动到另一位置,使电容器上的电荷量又变化了Q2,当油滴又运动了2t的时间,恰好回到原来的静止位置。设油滴在运动过程中未与极板接触,滑动变阻器滑动所用的时间与电容器充电、放电所用时间均忽略不计。求:Q1与Q2的比值。
如图所示,用长为l的绝缘细线拴一个质量为m、带电量为+q的小球(可视为质点)后悬挂于O点,整个装置处于水平向右的匀强电场中.将小球拉至使悬线呈水平的位置A后,由静止开始将小球释放,小球从A点开始向下摆动,当悬线转过角到达位置B时,速度恰好为零.求:
(1)B、A两点的电势差UBA;
(2)电场强度E;
(3)小球到达B点时,悬线对小球的拉力T;
(4)小球从A运动到B点过程中的最大速度vm和悬线对小球的最大拉力Tm.
搭载有“勇气”号火星车的探测器成功登陆在火星表面 。“勇气”号离火星地面12m时与降落伞自动脱离,被众气囊包裹的“勇气”号下落到地面后又弹跳到15m高处,这样上下碰撞了若干次后,才静止在火星表面上。假设“勇气”号下落及反弹运动均沿竖直方向。已知火星的半径为地球半径的二分之一,质量为地球的九分之一(取地球表面的重力加速度为10m/s2)。
(1)根据上述数据,火星表面的重力加速度是多少?
(2)若被众气囊包裹的“勇气”号第一次碰火星地面时,其机械能损失为其12m高处与降落伞脱离时的机械能的20﹪,不计空气的阻力,求“勇气”号与降落伞脱离时的速度。
(16分)如图所示,内壁光滑的半径为R的圆形轨道,固定在竖直平面内,质量为m1小球静止在轨道最低点,另一质量为m2的小球(两小球均可视为质点)从内壁上与圆心O等高的位置由静止释放,到最低点时与m1发生弹性碰撞,求:
(1)小球m2运动到最低点时的速度大小;
(2)碰撞后,欲使m1能沿内壁运动到最高点,则m2/m1应满足什么条件?