已知函数,
.
(Ⅰ)若,求函数
在区间
上的最值;
(Ⅱ)若恒成立,求
的取值范围. (注:
是自然对数的底数)
(原创)设、
.
(1)若在
上不单调,求
的取值范围;
(2)若对一切
恒成立,求证:
;
(3)若对一切,有
,且
的最大值为1,求
、
满足的条件.
如图,已知椭圆:
,其左右焦点为
及
,过点
的直线交椭圆
于
两点,线段
的中点为
,
的中垂线与
轴和
轴分别交于
两点,且
、
、
构成等差数列.
(1)求椭圆的方程;
(2)记△的面积为
,△
(
为原点)的面积为
.试问:是否存在直线
,使得
?说明理由.
如图,在三棱锥中,平面
平面
,
于点
,且
,
,
(1)求证:
(2)
(3)若,
,求三棱锥
的体积.
(本小题满分15分)在三角形中,
.
(1)求角的大小;
(2)若,且
,求
的面积.
(本小题满分14分)已知等差数列的前n项和为
,且
.数列
的前n项和为
,且
,
.
(1)求数列,
的通项公式;
(2)设, 求数列
的前
项和
.