如图所示,一质量为m、电荷量为q、重力不计的微粒,从倾斜放置的平行电容器I的A板处由静止释放,A、B间电压为U1。微粒经加速后,从D板左边缘进入一水平放置的平行板电容器II,由C板右边缘且平行于极板方向射出,已知电容器II的板长为板间距离的2倍。电容器右侧竖直面MN与PQ之间的足够大空间中存在着水平向右的匀强磁场(图中未画出),MN与PQ之间的距离为L,磁感应强度大小为B。在微粒的运动路径上有一厚度不计的窄塑料板(垂直纸面方向的宽度很小),斜放在MN与PQ之间,=45°。求:
(1)微粒从电容器I加速后的速度大小;
(2)电容器II CD间的电压;
(3)假设粒子与塑料板碰撞后,电量和速度大小不变、方向变化遵循光的反射定律,碰撞时间极短忽略不计,微粒在MN与PQ之间运动的时间和路程。
一根细绳不可伸长,通过定滑轮,两端系有质量为M和m的小球,且M=2m,开始时用手握住M,使M与m离地高度均为h并处于静止状态.求:
(1)当M由静止释放下落h高时的速度.
(2)设M落地即静止运动,求m离地的最大高度。(h远小于半绳长,绳与滑轮质量及各种摩擦均不计)
质量m=1kg的物体,在水平拉力F的作用下,沿粗糙水平面运动,经过位移4m时,拉力F停止作用,运动到位移是8m时物体停止。运动过程中Ek-的图线如图所示。求:
(1)物体的初速度为多大?
(2)物体跟水平面间的动摩擦因数为多大?
(3)拉力F的大小为多大?(g取10m/s2)
神舟五号载人飞船质量为m,在绕地球飞行的第5圈进行变轨,由原来的椭圆轨道变为距地面高度为h的圆形轨道。还已知地球半径为R,地面处的重力加速度为g。求:
(1)飞船在上述圆轨道上运行的周期T;
(2)飞船在上述圆轨道上运行时的动能EK.
一条河宽L=400m,水流的速度为=3m/s,船相对静水的速度
=5m/s。求:
⑴要想渡河的时间最短,船应向什么方向开出?渡河的最短时间是多少?此时船沿河岸方向漂移多远?
⑵要使渡河的距离最短,船应向什么方向开出?渡河的时间是多少?
一行星的半径是地球半径的2倍,密度与地球的密度相等.在此行星上以一定的初速度竖直上抛一物体,上升的高度为h,则在地球上以同样大的初速度竖直上抛同一物体,上升的高度应为多少?(空气阻力不计)