统计表明:某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度
(千米/每小时)的函数解析式可以表示为
,已知甲、乙两地相距100千米.
(1)当汽车以40千米/小时的速度行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大速度行驶时,从甲地到乙地耗油最少?最少为多少升?
求函数的单调递增区间.
(10分)设和
分别是先后抛掷一枚骰子得到的点数,用随机变量
表示方程
实根的个数(重根按一个计).
(Ⅰ)求方程有实根的概率;
(Ⅱ)求的分布列和数学期望;
(Ⅲ)求在先后两次出现的点数中有5的条件下,方程有实根的概率.
(10分)某运动员射击一次所得环数的分布如下:
![]() |
0~6 |
7 |
8 |
9 |
10 |
![]() |
0 |
![]() |
![]() |
![]() |
![]() |
现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为.
(I)求该运动员两次都命中7环的概率
(II)求的分布列
(III)求的数学期望
(8分) 出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是
(I)求这位司机遇到红灯前,已经通过了两个交通岗的概率;
(II)求这位司机在途中遇到红灯数ξ的期望和方差。
(6分)已知其中
是常数,计算