如图所示为研究电子枪中电子在电场中运动的简化模型示意图.在xOy平面的第一象限,存在以x轴、y轴及双曲线y=
的一段(0≤x≤L,0≤y≤L)为边界的匀强电场区域Ⅰ;在第二象限存在以x=-L、x=-2L、y=0、y=L的匀强电场区域Ⅱ.两个电场大小均为E,不计电子所受重力,电子的电荷量为e,则:
(1)求从电场区域Ⅰ的边界B点处由静止释放电子,电子离开MNPQ时的坐标;
(2)证明在电场区域Ⅰ的AB曲线边界由静止释放电子恰能从MNPQ区域左下角P点离开;
(3)求由电场区域Ⅰ的AB曲线边界由静止释放电子到达P点所需最短时间.
(12分)如图14所示,回旋加速器D形盒的半径为R,用来加速质量为m、电荷量为q的质子,使质子由静止加速到能量为E后,由A孔射出,求:
(1)加速器中匀强磁场B的方向和大小;
(2)设两D形盒间距为d,其间电压为U,电场视为匀强电场,质子每次经电
场加速后能量增加,加速到上述能量所需回旋周数;
(3)加速到上述能量所需时间.
(14分)如图12所示,在坐标系xOy中,第一象限内充满着两个匀强磁场a和b,OP为分界线,在区域a中,磁感应强度为2B,方向垂直于纸面向里;在区域b中,磁感应强度为B,方向垂直于纸面向外,P点坐标为(4l,3l).一质量为m、电荷量为q的带正电的粒子从P点沿y轴负方向射入区域b,经过一段时间后,粒子恰能经过原点O,不计粒子重力.(sin37°=0.6,cos37°=0.8)求:
(1)粒子从P点运动到O点的时间最少是多少?
(2)粒子运动的速度可能是多少?
(12分)在电视机的设计制造过程中,要考虑到地磁场对电子束偏转的影响,可采用某种技术进行消除.为确定地磁场的影响程度,需先测定地磁场的磁感应强度的大小,在地球的北半球可将地磁场的磁感应强度分解为水平分量B1和竖直向下的分量B2,其中B1沿水平方向,对电子束影响较小可忽略,B2可通过以下装置进行测量.如图11所示,水平放置的显像管中电子(质量为m,电荷量为e)从电子枪的炽热灯丝上发出后(初速度可视为0),先经电压为U的电场加速,然后沿水平方向自南向北运动,最后打在距加速电场出口水平距离为L的屏上,电子束在屏上的偏移距离为d.
(1)试判断电子束偏向什么方向;
(2)试求地磁场的磁感应强度的竖直分量B2.
(11分)如图10所示,长为L、间距为d的平行金属板间,有垂直于纸面向里的匀强磁场,磁感应强度为B,两板不带电,现有质量为m、电荷量为q的带正电粒子(重力不计),从左侧两极板的中心处以不同速率v水平射入,欲使粒子不打在板上,求粒子速率v应满足什么条件?、 
(14分)如图12所示,匀强电场区域和匀强磁场区域是紧邻的,且宽度相等均为d,电场方向在纸平面内竖直向下,而磁场方向垂直于纸面向里,一带正电的粒子从O点以速度v0沿垂直电场方向进入电场,从A点出电场进入磁场,离开电场时带电粒子在电场方向的偏转位移为电场宽度的一半,当粒子从磁场右边界上C点穿出磁场时速度方向与进入电场O点时的速度方向一致,已知d、v0(带电粒子重力不计),求:
(1)粒子从C点穿出磁场时的速度大小v;
(2)电场强度E和磁感应强度B的比值
.