游客
题文

如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=

(I)若M为PA中点,求证:AC∥平面MDE;
(II)求直线PA与平面PBC所成角的正弦值;
(III)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为

科目 数学   题型 解答题   难度 中等
知识点: 平行线法
登录免费查看答案和解析
相关试题

已知等差数列{an}的前n项和为Sn,且满足a2=4,a3+a4=17.
(1)求{an}的通项公式;
(2)设bn=2an+2,证明数列{bn}是等比数列并求其前n项和Tn

已知函数 f ( x ) 满足下列关系式:(i)对于任意的 x , y R ,恒有 2 f ( x ) f ( y ) = f ( π 2 - x + y ) - f ( π 2 - x - y ;(ii) f ( π 2 ) = 1

求证:
(1) f ( 0 ) =0;
(2) f ( x ) 为奇函数;
(3) f ( x ) 是以 2 π 为周期的周期函数.

已知函数 f ( x ) = sin 2 x + a sin x cos x - cos 2 x ,且 f ( π 4 ) = 1 .

(1)求常数a的值及 f ( x ) 的最小值;
(2)当 x 0 , π 2 时,求 f ( x ) 的单调增区间.

如图,半径为1的扇形中心角为 π 3 ,一个矩形的一边在扇形的半径上,求此矩形的最大面积.

求函数y=sinx+cosx的周期,对称轴方程并指出图象可由正弦曲线经过怎样的变化得到.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号