如图,已知矩形中,
,
,将矩形沿对角线
把
折起,使
移到
点,且
在平面
上的射影
恰好在
上.
(1)求证:;
(2)求证:平面平面
;
(3)求三棱锥的体积.
(本小题满分12分)在中,角A、B、C的对边分别为a、b、c,且
,
,
边上的中线
的长为
.
(Ⅰ) 求角和角
的大小;
(Ⅱ) 求的面积。
已知点,
.
(Ⅰ)若, 求
的值;
(Ⅱ)设为坐标原点, 点C在第一象限, 求函数
的单调递增区间与值域.
(本小题满分14分)
已知函数的图象过坐标原点O, 且在点
处的切线的斜率是
.(1)求实数
的值;(2)求
在区间
上的最大值
(本小题满分12分)
某单位建造一间地面面积为12 平方米的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过米 ,房屋正面的造价为400元/平方米,房屋侧面的造价为150元/平方米,屋顶和地面的造价费用合计为5800元,如果墙高为3米,且不计房屋背面的费用.(1)把房屋总造价y表示成x的函数,并写出该函数的定义域;(2)当侧面的长度为多少时,总造价最低?最低造价是多少?
(本小题满分12分)
如图,菱形的边长为
,
,
.将菱形
沿对角线
折起,得到三棱锥
,点
是棱
的中点,
.
(1)求证:平面
;
(2)求证:平面
;平面
平面
;
(3)求三棱锥的体积.