设集合,
,若
,求实数
的取值范围.
(文)如图,在四棱锥中,四边形
是菱形,
,
为
的中点.
(1)求证:面
;
(2)求证:平面平面
.
(1)已知矩阵,若矩阵
对应的变换把直线
:
变为直线
,求直线
的方程.
(2)在极坐标系中,圆的方程为
,以极点为坐标原点,极轴为
轴 的正半轴建立平面直角坐标系,直线
的参数方程为
(
为参数),求直线
被 圆
截得的弦
的长度.
(文)在平面直角坐标系中,设锐角
的始边与
轴的非负半轴重合,终边与单位 圆交于点
,将射线
绕坐标原点
按逆时针方向旋转
后与单位圆交于点
.记
.(1)求函数
的值域;(2)设
的角
所对的边分别为
,若
,且
,
,求
.
已知数列的前n项和为
,且
,
(1)求数列的通项公式;
(2)令,且数列
的前n项和为
,求
;
(3)若数列满足条件:
,又
,是否存在实数
,使得数列
为等差数列?
宜昌市是全国11个重要旅游城市之一,促使了当地的宾馆生意火爆。当地某居民有楼房一幢,室内面积共180,拟分隔成两类房间作为旅游客房,大房间每间面积为18
,可住游客5名,每名游客每天住宿费为40元,小房间每间面积为15
,可住游客3名,每名游客每天住宿费为50元,装修大房间每间需要1000元,装修小房间每间需要600元,如果他们只能筹8000元用于装修,且游客能住满客房,它应隔出大房间和小房间各多少间,能获最大利益?