设函数y=f(x)在(-∞,+∞)内有定义,对于给定的正数K,定义函数fK(x)=取函数f(x)=2-|x|.当K=
时,函数fK(x)的单调递增区间为________.
已知f(x)=(ex-1)2+(e-x-1)2,则f(x)的最小值为________.
已知函数f(x)=a-是定义在(-∞,-1]∪[1,+∞)上的奇函数,则f(x)的值域是________.
设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.
(1)记集合M={(a,b,c)|a、b、c不能构成一个三角形的三条边长,且a=b},则(a,b,c)∈M所对应的f(x)的零点的取值集合为________.
(2)若a、b、c是△ABC的三条边长,则下列结论正确的是________.(填序号)
①x∈(-∞,1),f(x)>0;
②x∈R,使ax、bx、cx不能构成一个三角形的三条边长;
③若△ABC为钝角三角形,则x∈(1,2),使f(x)=0.
设函数f(x)=ex+x-2,g(x)=lnx+x2-3.若实数a、b满足f(a)=0,g(b)=0,则g(a)、f(b)、0三个数的大小关系为________.